清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tiny‐Crack‐Net: A multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks

分割 计算机科学 人工智能 模式识别(心理学) 卷积神经网络 GSM演进的增强数据速率 特征(语言学) 计算机视觉 语言学 哲学
作者
Hong-Hu Chu,Wei Wang,Lu Deng
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (14): 1914-1931 被引量:125
标识
DOI:10.1111/mice.12881
摘要

Abstract Convolutional neural networks (CNNs) have gained growing interest in recent years for their advantages in detecting cracks on concrete bridge components. Class imbalance is a fundamental problem in crack segmentation, resulting in unsatisfactory segmentation for tiny cracks. Besides, limited by the local receptive field, CNNs often cannot integrate local features with global dependencies, thus significantly affecting the detection accuracy of tiny cracks across the entire image. To solve those problems in segmenting tiny cracks, a multiscale feature fusion network with attention mechanisms named “Tiny‐Crack‐Net” (TCN) is proposed. The modified residual network was used to capture the local features of tiny cracks. The dual attention module was then incorporated into the architecture to better separate the tiny cracks from the background. Also, a multiscale fusion operation was implemented to preserve the edge details of tiny cracks. Finally, a joint learning loss of the cross‐entropy and similarity was proposed to alleviate the poor convergence induced by the severe class imbalance of the pixels representing tiny cracks. The capability of the network in segmenting tiny cracks was remarkably enhanced by the aforementioned arrangements, and the “Tiny‐Crack‐Net” achieved a Dice similarity coefficient of 87.96% on an open‐source data set, which was at least 5.84% higher than those of the six cutting‐edge networks. The effectiveness and robustness of the “Tiny‐Crack‐Net” were validated with field test results, which showed that the intersection over union (IOU) for cracks with a width of 0.05 mm or wider reaches 91.44%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
17秒前
Claudia发布了新的文献求助10
20秒前
22秒前
25秒前
30秒前
紫熊完成签到,获得积分10
33秒前
41秒前
zzhui完成签到,获得积分10
47秒前
Vintoe完成签到 ,获得积分10
1分钟前
小燕子完成签到 ,获得积分10
1分钟前
Owen应助catherine采纳,获得10
1分钟前
cat发布了新的文献求助50
1分钟前
juan完成签到 ,获得积分0
1分钟前
赵一完成签到 ,获得积分10
2分钟前
2分钟前
catherine发布了新的文献求助10
2分钟前
龚文亮完成签到,获得积分10
3分钟前
3分钟前
Ricewind发布了新的文献求助10
3分钟前
米奇妙妙屋完成签到,获得积分10
3分钟前
随心所欲完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得300
4分钟前
林夕完成签到 ,获得积分10
5分钟前
连战完成签到,获得积分10
5分钟前
PAIDAXXXX完成签到,获得积分10
6分钟前
6分钟前
晁子枫完成签到 ,获得积分10
6分钟前
6分钟前
田様应助冥土追魂采纳,获得10
7分钟前
7分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
7分钟前
Claudia发布了新的文献求助10
7分钟前
典雅的纸飞机完成签到 ,获得积分10
7分钟前
358489228完成签到,获得积分10
7分钟前
阔达的蜜粉完成签到,获得积分10
7分钟前
大个应助阔达的蜜粉采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652745
关于积分的说明 14701972
捐赠科研通 4594595
什么是DOI,文献DOI怎么找? 2521083
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463698