EEG emotion recognition based on enhanced SPD matrix and manifold dimensionality reduction

模式识别(心理学) 降维 人工智能 计算机科学 支持向量机 非线性降维 黎曼流形 协方差矩阵 基质(化学分析) 维数之咒 脑电图 随机森林 歧管(流体力学) 数学 算法 心理学 复合材料 精神科 材料科学 数学分析 工程类 机械工程
作者
Yunyuan Gao,Xinyu Sun,Ming Meng,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105606-105606 被引量:30
标识
DOI:10.1016/j.compbiomed.2022.105606
摘要

Recently, Riemannian geometry-based pattern recognition has been widely employed to brain computer interface (BCI) researches, providing new idea for emotion recognition based on electroencephalogram (EEG) signals. Although the symmetric positive definite (SPD) matrix manifold constructed from the traditional covariance matrix contains large amount of spatial information, these methods do not perform well to classify and recognize emotions, and the high dimensionality problem still unsolved. Therefore, this paper proposes a new strategy for EEG emotion recognition utilizing Riemannian geometry with the aim of achieving better classification performance. The emotional EEG signals of 32 healthy subjects were from an open-source dataset (DEAP). The wavelet packets were first applied to extract the time-frequency features of the EEG signals, and then the features were used to construct the enhanced SPD matrix. A supervised dimensionality reduction algorithm was then designed on the Riemannian manifold to reduce the high dimensionality of the SPD matrices, gather samples of the same labels together, and separate samples of different labels as much as possible. Finally, the samples were mapped to the tangent space, and the K-nearest neighbors (KNN), Random Forest (RF) and Support Vector Machine (SVM) method were employed for classification. The proposed method achieved an average accuracy of 91.86%, 91.84% on the valence and arousal recognition tasks. Furthermore, we also obtained the superior accuracy of 86.71% on the four-class recognition task, demonstrated the superiority over state-of-the-art emotion recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
21发布了新的文献求助10
4秒前
QH完成签到,获得积分10
4秒前
耍酷的小海豚完成签到 ,获得积分10
4秒前
4秒前
replay完成签到,获得积分10
4秒前
一夜暴富完成签到,获得积分10
5秒前
归途完成签到 ,获得积分10
7秒前
信徒完成签到,获得积分10
8秒前
ewyzero应助翔霖永远热恋采纳,获得10
8秒前
zhzhzh发布了新的文献求助30
8秒前
9秒前
鱼书发布了新的文献求助10
9秒前
Billy应助QH采纳,获得30
9秒前
10秒前
10秒前
10秒前
10秒前
12秒前
Owen应助SN采纳,获得10
13秒前
Juany完成签到 ,获得积分10
13秒前
14秒前
天羽发布了新的文献求助10
14秒前
立军发布了新的文献求助10
14秒前
15秒前
21发布了新的文献求助10
15秒前
EtAior发布了新的文献求助10
15秒前
17秒前
Grace Lee完成签到,获得积分10
18秒前
Poppy完成签到 ,获得积分10
18秒前
19秒前
加减乘除发布了新的文献求助10
19秒前
小张完成签到 ,获得积分10
19秒前
yiyy发布了新的文献求助10
19秒前
科研通AI5应助鱼书采纳,获得10
20秒前
lynn应助Bin_Liu采纳,获得10
20秒前
21秒前
满眼喜欢遍布星河完成签到,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812498
求助须知:如何正确求助?哪些是违规求助? 3357038
关于积分的说明 10384989
捐赠科研通 3074237
什么是DOI,文献DOI怎么找? 1688682
邀请新用户注册赠送积分活动 812296
科研通“疑难数据库(出版商)”最低求助积分说明 766986