An Unsupervised Laplacian Pyramid Network for Radiometrically Accurate Data Fusion of Hyperspectral and Multispectral Imagery

高光谱成像 多光谱图像 计算机科学 人工智能 模式识别(心理学) 锐化 图像分辨率 多光谱模式识别 数据集 计算机视觉 遥感 地质学
作者
Sihan Huang,David W. Messinger
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2022.3168511
摘要

Improving the spatial resolution of hyperspectral images (HSIs) has traditionally been an important topic in the field of remote sensing. Many approaches have been proposed based on various theories, including component substitution, multiresolution analysis, spectral unmixing, Bayesian probability, and tensor representation. However, these methods have some common disadvantages such that their performance degrades dramatically as the up-scale ratio increases, and they have little concern for the per-pixel radiometric accuracy of the sharpened image. Moreover, many learning-based methods have been proposed through decades of innovations, but most of them require a large set of training pairs, which is unpractical for many real problems. To solve these problems, we propose a stable hyperspectral sharpening method based on the Laplacian pyramid and the generative convolutional neural network (CNN), which achieves superior radiometric accuracy of the sharpened data in different up-scale ratios based on one single input pair. First, with a low-resolution HSI (LR-HSI) and high-resolution multispectral image (HR-MSI) pair, the preliminary high-resolution HSI (HR-HSI) is calculated via linear regression. Then, the high-frequency details of the preliminary HR-HSI are estimated via the subtraction between it and the CNN-generated-blurry version. By injecting the details to the output of the generative CNN with the LR-HSI as input, the final HR-HSI is obtained. Nine different state-of-the-art sharpening methods are chosen as our baselines, and three different datasets with different scene content are tested. Furthermore, the target detection method, the adaptive coherence estimator (ACE), is conducted on the reconstructed HR-HSI to evaluate the per-pixel radiometric accuracy. The results demonstrate that the proposed method has the best and the most stable performance in terms of spectral and spatial accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路寻完成签到,获得积分10
1秒前
追逐的疯完成签到,获得积分10
1秒前
2秒前
诸葛烤鸭完成签到,获得积分10
2秒前
情怀应助pophoo采纳,获得10
3秒前
3秒前
6秒前
喵喵完成签到 ,获得积分10
7秒前
7秒前
味子橘完成签到 ,获得积分10
8秒前
gxh发布了新的文献求助10
8秒前
9秒前
立军发布了新的文献求助10
9秒前
andy发布了新的文献求助10
9秒前
song完成签到 ,获得积分10
9秒前
koukousang完成签到,获得积分10
10秒前
鲜艳的皮皮虾完成签到 ,获得积分10
12秒前
13秒前
笨笨忘幽发布了新的文献求助10
13秒前
Lazarus_x完成签到,获得积分10
14秒前
物质尽头完成签到 ,获得积分10
14秒前
独狼完成签到 ,获得积分10
17秒前
BettyNie完成签到 ,获得积分10
17秒前
燕聪聪发布了新的文献求助30
17秒前
电闪完成签到,获得积分10
18秒前
赘婿应助德州老农采纳,获得10
20秒前
甜甜甜完成签到 ,获得积分10
21秒前
KCl完成签到 ,获得积分10
23秒前
26秒前
学术老6完成签到 ,获得积分10
27秒前
27秒前
海带先生完成签到,获得积分10
28秒前
无奈的惜蕊完成签到,获得积分10
28秒前
大模型应助nav采纳,获得10
30秒前
科研通AI2S应助立军采纳,获得10
32秒前
科研通AI5应助立军采纳,获得10
32秒前
共享精神应助lx采纳,获得10
32秒前
钱多多完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734