Learning-Based Grey Wolf Optimizer for Stochastic Flexible Job Shop Scheduling

计算机科学 数学优化 强化学习 调度(生产过程) 作业车间调度 地铁列车时刻表 人工智能 数学 操作系统
作者
ChengRan Lin,Zhengcai Cao,MengChu Zhou
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 3659-3671 被引量:13
标识
DOI:10.1109/tase.2021.3129439
摘要

This work considers a stochastic flexible job shop scheduling with limited extra resources and machine-dependent setup time in a semiconductor manufacturing environment, which is an NP-hard problem. In order to obtain its reliable and high-performance schedule in a reasonable time, a learning-based grey wolf optimizer is proposed. In it, an optimal computing budget allocation-based approach, which is designed for two scenarios from real manufacturing environments, is proposed to intelligently allocate computing budget and improve search efficiency. It extends the application area of optimal computing budget allocation by laying a theoretic foundation. Besides, to obtain proper control parameters iteratively, a reinforcement learning algorithm with a newly designed delay update strategy is used to build a parameter tuning scheme of a grey wolf optimizer. The scheme acts as a guide for balancing global and local search, thereby enhancing effectiveness of the proposed algorithm. The theoretic interpretation of the developed optimal computing budget allocation-based approach and the convergence analysis results of the proposed algorithm are presented. Various experiments with benchmarks and randomly generated cases are performed to compare it with several updated algorithms. The results shows its superiority over them. Note to Practitioners—Meta-heuristic are often deployed to solve semiconductor manufacturing scheduling problems. However, they face to two thorny issues when they face stochastic manufacturing environments. 1) their computational efficiency is quite low, thus requiring substantial improvement, since a stochastic optimization problem requires Monte Carlo sampling to estimate the actual objective function values in a precise manner; and 2) most of them are parameter-sensitive, and choosing their proper parameters is highly challenging in such environments. To address the first issue, we develop an optimal computing budget allocation-based method for deciding the optimal numbers of sampling times based on both prior knowledge and simulation results. To address the second one, we propose a reinforcement learning algorithm to self-adjust the parameters of our proposed method called Learning-based Grey Wolf Optimizer. In addition, we design a delay update strategy to enhance its robustness, and thus, a feasible and high-quality schedule can be founded in a short time for real-time scheduling problems. Theoretic proofs and experimental results show that the proposed method is effective and efficient. Consequently, it can be readily applicable to practical semiconductor manufacturing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
yeah发布了新的文献求助10
3秒前
深情安青应助Shayulajiao采纳,获得10
3秒前
啊TiP完成签到,获得积分10
4秒前
4秒前
XXH发布了新的文献求助10
5秒前
细腻的歌曲完成签到,获得积分10
5秒前
火华发布了新的文献求助10
6秒前
6秒前
hhx完成签到,获得积分10
6秒前
6秒前
8秒前
yc发布了新的文献求助10
8秒前
8秒前
9秒前
珊珊发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
Wht发布了新的文献求助50
12秒前
1793480753发布了新的文献求助10
12秒前
zz发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
科研八戒发布了新的文献求助10
14秒前
搜集达人应助舒心初晴采纳,获得10
14秒前
Parsifal发布了新的文献求助10
16秒前
冖廴发布了新的文献求助10
16秒前
深情安青应助Huareyou采纳,获得10
16秒前
zzt发布了新的文献求助10
16秒前
orixero应助火华采纳,获得10
16秒前
17秒前
yeah完成签到,获得积分10
17秒前
zyyla发布了新的文献求助10
17秒前
17秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797198
求助须知:如何正确求助?哪些是违规求助? 3342650
关于积分的说明 10312386
捐赠科研通 3059386
什么是DOI,文献DOI怎么找? 1678863
邀请新用户注册赠送积分活动 806248
科研通“疑难数据库(出版商)”最低求助积分说明 763007