已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inhibition of AMPK activity by TRIM11 facilitates cell survival of hepatocellular carcinoma under metabolic stress

安普克 肝细胞癌 医学 癌症研究 内科学 肿瘤科 化学 蛋白激酶A 生物化学
作者
Yanfeng Liu,Yingying Xu,Fan Wang,Tao Yu,Hongchang Li,Xiaochun Wan,Xiaolu Yang,Liang Chen
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:11 (12) 被引量:5
标识
DOI:10.1002/ctm2.617
摘要

AMP-responsive protein kinase (AMPK) is a master nutrient and energy sensor, keeping the cellular energy homeostasis during metabolic stress.1, 2 Loss of AMPK or deregulation of its activity has been detected in multiple human cancers including hepatocellular carcinoma (HCC).3, 4 However, the underlying molecular mechanism of dysregulation of AMPK activity is still largely unclear. We previously demonstrated that an E3 ubiquitin-ligase, TRIM11, is a key player during various stress conditions and tumourigenesis.5, 6 In this report, we clarified TRIM11 as a new mechanism for negatively regulating AMPK activity during glucose starvation, and suggest that TRIM11-AMPK axis is crucial for HCC survival and progression. We determined that TRIM11 is liked with metabolic reprogramming and its expression was induced upon glucose starvation (Figure 1A and Figure S1A–C). As glucose deprivation would be detrimental for tumour cell survival, we examined the role of TRIM11 in this process and found it positively regulated tumour cells viability upon glucose deprivation (Figure 1B,C and Figure S1D–F), and similar results could be found in the role of TRIM11 in vivo (Figure 1D–F). Gene set enrichment analysis (GSEA) revealed that several metabolic pathways gene set were significantly enriched in the TRIM11_low expression HCC patients (Figure 1G and Figure S1G and Table S1). Then, we indeed found that TRIM11 could regulate glucose metabolism in the HCC cells and patient tissues (Figure 1H–J and Figure S1H). Together, these results suggest that the upregulation of TRIM11 serves as a novel protecting mechanism to avoid HCC cells death upon metabolic stress. Next, we analysed the protein interaction network of TRIM11 and demonstrated that TRIM11 mainly interacts with AMPKβ2 and also shows a weak interaction with AMPKα and AMPKγ2 subunits (Figure 2A and Figure S2A–D). AMPK consists of catalytic α, regulatory β and γ subunits, and all of these subunits are closely linked to the activating AMPK,7, 8 implying TRIM11 may regulate AMPK activity by selective modulation of AMPK regulatory subunits. As expected, TRIM11 significantly enhanced ubiquitination level of AMPKβ2 and accelerated its protein degradation (Figure 2B,C and Figure S2E), and negatively controlling AMPK signaling activity in the HCC cells and tissues (Figure 2D,E and Figure S2F–L). To map the binding domain between TRIM11 and AMPKβ2, we constructed their corresponding deletion mutants (Figure S2M,N), and determined that the RING domain of TRIM11 is required for the interaction with AMPKβ2 (Figure 2F). As we previously reported,5, 6 a TRIM11 mutant (TRIM11-2CA) that lost its ubiquitination activity was used (Figure S2M). TRIM11-2CA displayed a reduced interaction with AMPKβ2, decreased its ubiquitination, increased stability of AMPKβ2, and also impaired its function in controlling AMPK activity and tumour cell viability (Figure 2G–K). Meantime, we found that the β-CTD of AMPKβ2 was crucial for its interaction with TRIM11 and that the AMPKβ2-K260R mutant could suppress the ubiquitination level of AMPKβ2 and enhance its stability (Figure 2L,M and Figure S2O), suggesting that TRIM11 directly targets K260 of AMPKβ2 to mediate its degradation. Collectively, these data demonstrate that TRIM11 destabilizes AMPKβ2 through directly promoting its protein degradation, which is required for its effects on AMPK activity and HCC cell survival. AMPK can be activated upon glucose deprivation, which results in starvation-induced autophagy, this trigging autophagic cell death,7, 9 suggesting that TRIM11 may act as an upstream regulator of AMPK/autophagy pathway. We analysed that autophagy activation was inversely linked with TRIM11 level in HCC (Figure S3A). Then, we observed the formation of autophagosomes and evaluated the localisation of LC3B, a marker protein for autophagosomes,10 as well as the expression level of the autophagy markers (LC3-II and p62), confirming that TRIM11 negatively regulates the induction of autophagy during metabolic stress (Figure 3A–F and Figure S3B,C). While TRIM11-2CA was less effective in regulating the autophagy compared with TRIM11-WT (Figure S3D). In addition, autophagic flux inhibitor chloroquine (CQ) could abrogate the effective knockdown of TRIM11-mediated activation of autophagy (Figure S3E). Of note, TRIM11-mediated autophagy regulation and tumour cell survival were diminished in AMPK-knockdown cells or treated with AMPK inhibitor compound C (Figure S3F–N), revealing that TRIM11-mediated negative regulation of autophagy depends on AMPK. Similarly, we confirmed this conclusion in MEFs (Figure 3G–J and Figure S3O,P). Together, these data demonstrate that TRIM11 negatively regulates autophagy depending on its controlling AMPK activity. Next, we explored whether AMPK activity is required for TRIM11-mediated protection of HCC cell survival. As expected, TRIM11 indeed significantly enhanced HCC cell viability upon the AMPK activator AICAR treatment, but TRIM11-mediated HCC cell survival was abrogated in the AMPK-knockdown cells (Figure S4A,B). Consistently, this effect was also confirmed in MEFs (Figure 4A). And TRIM11 also obviously abrogate metformin-mediated HCC therapeutic effects in vivo (Figure 4B,C and Figure S4C–E),suggesting that inhibiting TRIM11-AMPK axis helps effective treatment of HCC. For its clinical significance in HCC patients, we found that the expression level of TRIM11 negatively correlated with AMPKβ2 and pAMPK (Figure 4D and Figure S4F,G). In addition, we found an increased TRIM11 staining intensity in HCC tissues relative to adjacent counterparts (Figure S5A,B), and the transcription levels of TRIM11 were also significantly upregulated in many cancerous tissues (Figure S5C–J). Of note, survival analysis showed that TRIM11High predicts worse overall survival than those with TRIM11Low (Figure 4E,F). Similar results were found in the TCGA cohort (Figure 4G and Figure S5K–N). Consistently, TCGA pan-cancer cohort also revealed TRIM11High in the tumour patients displayed shorten overall survival (OS) and disease/progression-free survival time (DFS/PFS) compared with TRIM11Low tumour patients (Figure 4H and Figure S5O,P). Thus, these results demonstrate that upregulation of TRIM11 promotes tumour progression and can be served as a crucial indicator for poor prognosis in the pan-cancer cohort. Together, our data demonstrated that TRIM11 was found to be significantly induced to mediate cellular metabolic reprogramming and inhibited the stimulation of autophagy via directly targeting AMPK signaling pathway to promote HCC cell survival (Figure 4I). Our study highlights a crucial promoter implicated in metabolic stress, the TRIM11-AMPK axis, which will provide the theoretical basis and intervention targets for developing more effective means of clinical treatment of HCC. We thank Dr. Yi Xu at University of Pennsylvania for critical suggestions and reading of the manuscript. This work was supported by National Key R&D Program of China (2020YFA0710802), National Natural Science Foundation of China (31701005, 81874174, 82073190 and 81572832), SIAT Innovation Program for Excellent Young Researchers (201801), SIAT-GHMSC Biomedical Laboratory for Major Human Diseases, Shanghai Rising-Star Program (18QA1402600), Shanghai Municipal Commission of Health and Family Planning (2018YQ12) and School of Medicine, Shanghai Jiao Tong University (Excellent Youth Scholar Initiation GrantNumbers 17XJ11015 and 18XJ11006). The authors declare that there is no conflict of interest. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
绝闆唯一完成签到,获得积分10
2秒前
5秒前
7秒前
小罗完成签到 ,获得积分10
10秒前
10秒前
10秒前
stars完成签到 ,获得积分10
11秒前
科研通AI2S应助lkk采纳,获得10
13秒前
CodeCraft应助馒头采纳,获得10
13秒前
13秒前
墨点完成签到 ,获得积分10
14秒前
llxgjx完成签到,获得积分10
17秒前
xj0806发布了新的文献求助10
20秒前
ling发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
25秒前
rainsy发布了新的文献求助10
28秒前
大个应助谨慎冰海采纳,获得10
28秒前
无算浮白发布了新的文献求助10
28秒前
翻翻发布了新的文献求助10
29秒前
29秒前
30秒前
科研通AI2S应助陶醉觅夏采纳,获得10
32秒前
窝是喵星人完成签到,获得积分10
32秒前
dd发布了新的文献求助10
33秒前
33秒前
无算浮白完成签到,获得积分10
33秒前
唐枫发布了新的文献求助10
34秒前
科目三应助ling采纳,获得10
36秒前
38秒前
科目三应助翻翻采纳,获得10
39秒前
幽默的友灵完成签到,获得积分10
41秒前
小药师发布了新的文献求助10
43秒前
万能图书馆应助dd采纳,获得10
44秒前
代玉发布了新的文献求助30
44秒前
46秒前
慕青应助ccm采纳,获得10
46秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Cross-Cultural Psychology: Critical Thinking and Contemporary Applications (8th edition) 800
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
岩石破裂过程的数值模拟研究 500
Electrochemistry 500
Broflanilide prolongs the development of fall armyworm Spodoptera frugiperda by regulating biosynthesis of juvenile hormone 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2373776
求助须知:如何正确求助?哪些是违规求助? 2081280
关于积分的说明 5215073
捐赠科研通 1808880
什么是DOI,文献DOI怎么找? 902815
版权声明 558343
科研通“疑难数据库(出版商)”最低求助积分说明 482034