Attention-based LSTM network-assisted time series forecasting models for petroleum production

计算机科学 时间序列 人工智能 数据挖掘 生产(经济) 机器学习 窗口(计算) 深度学习 滑动窗口协议 过程(计算) 操作系统 宏观经济学 经济
作者
Indrajeet Kumar,Bineet Kumar Tripathi,Anugrah Singh
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106440-106440 被引量:7
标识
DOI:10.1016/j.engappai.2023.106440
摘要

Petroleum production forecasting is the process of predicting fluid production from the wells using historical data. In contrast to the traditional methods of analysing surface and subsurface parameters governing fluid production, machine learning (ML) techniques are being applied to forecast the production. The major drawback of traditional and conventional ML techniques is that they are time-consuming and often lack good forecasting power. In this work, time-series forecast models based on powerful and efficient ML techniques are developed to forecast production with historical data. We have fused the attention mechanism into the long short-term memory network, which is referred as the attention-based long short-term memory (A-LSTM) network. The A-LSTM network is fast and accurate, thus solving the low forecasting power problem. To ensure no data leakage occurs during training, and to build a reliable data-driven forecasting approach, we construct the dynamic floating window with varying window sizes over the entire production data. The dynamic floating window slides one-step forward after every prediction and continues till the last production window enabling the model to fit the new data automatically. We have tested and validated the proposed forecasting models with the ML algorithm using actual production data for three wells from entirely different geographies. We then compared them with statistical, deep learning, hybrid, and ML approaches. The genetic algorithm (GA) is applied to optimize the hyper-parameters of the A-LSTM. The results of a comparative analysis show that the A-LSTM network statistically and computationally outperforms the other models for forecasting petroleum production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bk201完成签到,获得积分10
1秒前
3秒前
4秒前
曹小仙男完成签到 ,获得积分10
5秒前
6秒前
牧瞻完成签到,获得积分10
6秒前
顺利毕业完成签到 ,获得积分10
7秒前
JIANYOUFU发布了新的文献求助30
8秒前
爆米花应助刻苦如豹采纳,获得10
8秒前
青橘短衫发布了新的文献求助10
9秒前
舒适水杯发布了新的文献求助10
11秒前
找寻四氢叶酸完成签到,获得积分10
11秒前
智智完成签到,获得积分10
12秒前
捉一只小鱼完成签到 ,获得积分10
15秒前
cgs完成签到 ,获得积分10
15秒前
Zoe完成签到,获得积分10
15秒前
Isaacwg168完成签到 ,获得积分10
16秒前
刻苦如豹完成签到,获得积分10
18秒前
18秒前
椿iii完成签到 ,获得积分10
19秒前
烟花应助刘燕采纳,获得10
20秒前
温暖囧完成签到 ,获得积分10
20秒前
djc完成签到,获得积分10
21秒前
22秒前
ctwcrew发布了新的文献求助10
26秒前
青橘短衫完成签到,获得积分10
29秒前
胡平发布了新的文献求助10
31秒前
慕青应助lszhw采纳,获得10
31秒前
31秒前
31秒前
NexusExplorer应助青橘短衫采纳,获得10
33秒前
35秒前
36秒前
ctwcrew完成签到,获得积分10
36秒前
36秒前
37秒前
刘燕发布了新的文献求助10
38秒前
39秒前
搜集达人应助lifeng采纳,获得10
39秒前
vantlin完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522