A dual attention driven multiscale-multilevel feature fusion approach for hyperspectral image classification

高光谱成像 计算机科学 人工智能 判别式 模式识别(心理学) 水准点(测量) 特征(语言学) 特征提取 卷积神经网络 深度学习 特征学习 数据挖掘 地理 大地测量学 语言学 哲学
作者
Ghulam Farooque,Liang Xiao,Allah Bux Sargano,Fazeel Abid,Fazal Hadi
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (4): 1151-1178 被引量:4
标识
DOI:10.1080/01431161.2023.2176721
摘要

Deep learning has achieved promising results for hyperspectral image (HSI) classification in recent years due to its hierarchical structure and automatic feature extraction ability from raw data. The HSI has continuous spectral information, allowing for the precise identification of materials by capturing minute spectral differences. Convolutional neural networks (CNNs) have proven to be effective feature extractors for HSI classification. However, inherent network limitations prevent them from adequately mining and representing the sequence attributes of spectral signatures and learning critical and valuable features from both spectral and spatial dimensions simultaneously. This paper proposes a deep learning-based framework called a novel dual attention-based multiscale-multilevel ConvLSTM3D (DAMCL) to address these challenges. In this work, our contribution is threefold; firstly, a dual attention mechanism is proposed, effectively learning critical and valuable features from spectral and spatial dimensions. Secondly, multiscale ConvLSTM3D blocks can learn the discriminative features alongside handling long-range dependencies of spectral data. Thirdly, these features are combined by a multilevel feature fusion approach to maximize the impact of features learned at different levels. To assess the performance of the proposed method, extensive experiments are carried out on five different benchmark datasets containing complex and challenging land cover classes. The results confirm that the proposed method outperforms state-of-the-art techniques with a small number of training samples in terms of overall accuracy (OA), average accuracy (AA), and Kappa (k). The overall accuracy of 98.88%, 99.42%, 99.20%, 95.37%, and 92.57% is achieved over the Indian Pines, Salinas Valley, University of Pavia, Houston 2013, and Houston 2018 datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
威武问枫发布了新的文献求助10
4秒前
ccyrichard完成签到,获得积分10
5秒前
杜青完成签到,获得积分10
5秒前
苦雨完成签到,获得积分10
7秒前
平淡的雁开完成签到 ,获得积分10
7秒前
吴彦祖发布了新的文献求助10
9秒前
小一完成签到,获得积分10
10秒前
稳重的悟空完成签到 ,获得积分10
10秒前
李健应助Ashely采纳,获得10
13秒前
雨巷完成签到,获得积分10
14秒前
研友_n0kjPL完成签到,获得积分0
15秒前
慕青应助elever11采纳,获得10
19秒前
丘比特应助直率的花生采纳,获得10
20秒前
20秒前
平平无奇小垃圾完成签到,获得积分20
23秒前
25秒前
26秒前
Ashely发布了新的文献求助10
26秒前
nenoaowu发布了新的文献求助10
28秒前
七QI完成签到 ,获得积分10
28秒前
Mr.Bad关注了科研通微信公众号
31秒前
31秒前
31秒前
ss应助jianning采纳,获得10
33秒前
33秒前
薛乎虚完成签到 ,获得积分10
34秒前
cdercder应助nenoaowu采纳,获得10
36秒前
Orange应助www采纳,获得10
37秒前
脑洞疼应助Ricky采纳,获得10
37秒前
独特的尔风完成签到,获得积分10
41秒前
汉堡包应助柔之采纳,获得10
43秒前
Ashely完成签到,获得积分10
43秒前
Robin完成签到,获得积分10
44秒前
达克赛德完成签到 ,获得积分10
46秒前
酷波er应助forge采纳,获得10
46秒前
罗实完成签到 ,获得积分10
47秒前
49秒前
怕黑向秋完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415