亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Opportunistic screening for osteoporosis and osteopenia from CT scans of the abdomen and pelvis using machine learning

医学 骨量减少 霍恩斯菲尔德秤 骨质疏松症 骨盆 逻辑回归 单变量 放射科 核医学 单变量分析 多元分析 多元统计 机器学习 内科学 计算机断层摄影术 骨矿物 计算机科学
作者
Ronnie Sebro,Cynthia De la Garza‐Ramos
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (3): 1812-1823 被引量:19
标识
DOI:10.1007/s00330-022-09136-0
摘要

To use multivariable machine learning using the computed tomography (CT) attenuation of each of the bones in the lumbar spine, pelvis, and sacrum, to predict osteoporosis/osteopenia.This was a retrospective study of 394 patients aged 50 years or older with CT scans of the abdomen and pelvis and dual-energy x-ray absorptiometry (DXA) scans obtained within 6 months of each other. Volumetric segmentations were performed for each of the bones from L1-L4 vertebrae, pelvis, and sacrum to obtain the mean CT attenuation of each bone. The data was randomly split into training/validation (n = 274, 70%) and test (n = 120, 30%) datasets. The CT attenuation of the L1 vertebrae, univariate logistic regression, least absolute shrinkage and selection operator (LASSO), and support vector machines (SVM) with radial basis function (RBF) were used to predict osteoporosis/osteopenia. The performance of using the CT attenuation at L1 to the univariate logistic regression, LASSO, and SVM models were compared using DeLong's test in the test dataset.All CT attenuation measurements were predictive of osteoporosis/osteopenia (p < 0.001 for all). The SVM model (accuracy = 0.892, AUC = 0.886) outperformed the models using the CT attenuation of threshold of 173.9 Hounsfield units (HU) at L1 (accuracy = 0.725, AUC = 0.739, p = 0.010), the univariate logistic regression model (accuracy = 0.767, AUC = 0.533, p < 0.001) and the LASSO model (accuracy = 0.817, AUC = 0.711, p = 0.007) to predict osteoporosis/osteopenia.A SVM model using the CT attenuations of multiple bones within the lumbar spine and pelvis and clinical data has a better ability to predict osteoporosis/osteopenia than using the CT attenuation of L1 or a LASSO model.• Multivariable SVM model using the CT attenuation of multiple bones and clinical/demographic data was more predictive than using the CT attenuation at L1 only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
15秒前
Perry应助Hannah采纳,获得30
16秒前
25秒前
29秒前
30秒前
35秒前
40秒前
42秒前
zgx完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助10
55秒前
58秒前
笑点低小蚂蚁完成签到,获得积分10
59秒前
1分钟前
lmplzzp发布了新的文献求助10
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
傲娇而又骄傲完成签到 ,获得积分10
1分钟前
吴彦祖完成签到,获得积分10
1分钟前
lmplzzp完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
嘉心糖完成签到,获得积分0
3分钟前
3分钟前
grewj6发布了新的文献求助10
3分钟前
3分钟前
3分钟前
领导范儿应助文静念真采纳,获得30
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4029436
求助须知:如何正确求助?哪些是违规求助? 3568308
关于积分的说明 11356174
捐赠科研通 3299396
什么是DOI,文献DOI怎么找? 1816658
邀请新用户注册赠送积分活动 890920
科研通“疑难数据库(出版商)”最低求助积分说明 813903