Aided design decision-making framework for engineering projects considering cost and social benefits

工程类 建筑工程 管理科学 业务 计算机科学 风险分析(工程)
作者
Meng-Nan Li,Xueqing Wang,R. C. H. Cheng,Yu‐An Chen
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-02-2024-0154
摘要

Purpose Currently, engineering project design lacks a design framework that fully combines subjective experience and objective data. This study develops an aided design decision-making framework to automatically output the optimal design alternative for engineering projects in a more efficient and objective mode, which synthesizes the design experience. Design/methodology/approach A database of design components is first constructed to facilitate the retrieval of data and the design alternative screening algorithm is proposed to automatically select all feasible design alternatives. Then back propagation (BP) neural network algorithm is introduced to predict the cost of all feasible design alternatives. Based on the gray relational degree-particle swarm optimization (GRD-PSO) algorithm, the optimal design alternative can be selected considering multiple objectives. Findings The case study shows that the BP neural network-cost prediction algorithm can well predict the cost of design alternatives, and the framework can be widely used at the design stage of most engineering projects. Design components with low sensitivity to design objectives have been obtained, allowing for the consideration of disregarding their impacts on design objectives in such situations requiring rapid decisions. Meanwhile, design components with high sensitivity to design objective weights have also been obtained, drawing special attention to the effects of changes in the importance of design objectives on the selection of these components. Simultaneously, the framework can be flexibly adjusted to different design objectives and identify key design components, providing decision reference for designers. Originality/value The framework proposed in this paper contributes to the knowledge of design decision-making by emphasizing the importance of combining objective data and subjective experience, whose significance is ignored in the existing literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ailemonmint完成签到 ,获得积分10
刚刚
1秒前
1秒前
qianqian发布了新的文献求助10
2秒前
朱笑白完成签到 ,获得积分10
2秒前
虚幻采枫发布了新的文献求助10
2秒前
司马立果发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Xiaoli发布了新的文献求助10
3秒前
香蕉觅云应助帅哥采纳,获得10
3秒前
容若发布了新的文献求助10
4秒前
cell完成签到,获得积分10
5秒前
葫芦冰糖发布了新的文献求助20
7秒前
9秒前
water完成签到,获得积分10
10秒前
田様应助元气少女岳云鹏采纳,获得10
10秒前
纯真的冥王星完成签到,获得积分10
11秒前
深情安青应助Han采纳,获得10
12秒前
13秒前
哆啦的空间站完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
asdfasdfj完成签到,获得积分20
15秒前
15秒前
无花果应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
fushumei应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI5应助欧姆小白采纳,获得10
16秒前
Johnson应助科研通管家采纳,获得10
16秒前
来吹吹风完成签到,获得积分10
16秒前
16秒前
打打应助科研通管家采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240739
求助须知:如何正确求助?哪些是违规求助? 3774406
关于积分的说明 11853163
捐赠科研通 3429577
什么是DOI,文献DOI怎么找? 1882404
邀请新用户注册赠送积分活动 934325
科研通“疑难数据库(出版商)”最低求助积分说明 840937