Channel-Spatial Attention Guided CycleGAN for CBCT-Based Synthetic CT Generation to Enable Adaptive Radiotherapy

计算机科学 增采样 人工智能 图像质量 计算机视觉 成像体模 锥束ct 均方误差 霍恩斯菲尔德秤 噪音(视频) 模式识别(心理学) 图像(数学) 数学 核医学 计算机断层摄影术 医学 放射科 统计
作者
Yangchuan Liu,Shimin Liao,Yechen Zhu,Fuxing Deng,Zijian Zhang,Xin Gao,Tingting Cheng
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 818-831 被引量:1
标识
DOI:10.1109/tci.2024.3402372
摘要

Cone-beam computed tomography (CBCT) is the most commonly used 3D imaging modality in image-guided radiotherapy. However, severe artifacts and inaccurate Hounsfield units render CBCT images directly unusable for dose calculations in radiotherapy planning. The deformed pCT (dpCT) image produced by aligning the planning CT (pCT) image with the CBCT image can be viewed as the corrected CBCT image. However, when the interval between pCT and CBCT scans is long, the alignment error increases, which reduces the accuracy of dose calculations based on dpCT images. This study introduces a channel-spatial attention-guided cycle-consistent generative adversarial network (cycleGAN) called TranSE-cycleGAN, which learns mapping from CBCT to dpCT images and generates synthetic CT (sCT) images similar to dpCT images to achieve CBCT image correction. To enhance the network's ability to extract global features that reflect the overall noise and artifact distribution of the image, a TranSE branch, which is composed of a SELayer and an improved window-based transformer, was added parallel to the original residual convolution branch to the cycleGAN generator. To evaluate the proposed network, we collected data from 51 patients with head-and-neck cancer who underwent both pCT and CBCT scans. Among these, 45 were used for network training, and 6 were used for network testing. The results of the comparison experiments with cycleGAN and respath-cycleGAN demonstrate that the proposed TranSE-cycleGAN excels not only in image quality evaluation metrics, including mean absolute error, root mean square error, peak signal-to-noise ratio, and structural similarity but also in the Gamma index pass rate, a metric for dose accuracy evaluation. The superiority of the proposed method indicates its potential value in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天发布了新的文献求助10
刚刚
LHNZMZMHK发布了新的文献求助10
1秒前
N型半导体发布了新的文献求助10
2秒前
2秒前
又又发布了新的文献求助10
2秒前
2秒前
4秒前
Nico应助daladidala采纳,获得10
5秒前
6秒前
苏幕完成签到,获得积分10
6秒前
6秒前
zhaxiao完成签到,获得积分10
7秒前
Victoria发布了新的文献求助10
7秒前
8秒前
天天快乐应助N型半导体采纳,获得10
8秒前
香蕉觅云应助小魏采纳,获得10
8秒前
康舟发布了新的文献求助10
9秒前
无花果应助故意的鸿涛采纳,获得10
9秒前
9秒前
Milo3691完成签到,获得积分20
9秒前
book应助科研通管家采纳,获得10
10秒前
water应助科研通管家采纳,获得20
10秒前
哈基米德应助科研通管家采纳,获得50
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
11秒前
water应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
Liufgui应助科研通管家采纳,获得30
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得30
11秒前
Owen应助科研通管家采纳,获得10
11秒前
七月半发布了新的文献求助10
11秒前
打打应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
12秒前
AlexLee发布了新的文献求助10
12秒前
111111111发布了新的文献求助10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110558
求助须知:如何正确求助?哪些是违规求助? 3648998
关于积分的说明 11557674
捐赠科研通 3354198
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909033
科研通“疑难数据库(出版商)”最低求助积分说明 825912