Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data

非线性系统 计算机科学 人工智能 心理学 算法 机器学习 应用数学 数学 物理 量子力学
作者
Nicola Milano,Monica Casella,Raymond G. Esposito,‎Davide Marocco
出处
期刊:Behavioral sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 527-527
标识
DOI:10.3390/bs14070527
摘要

Latent variables analysis is an important part of psychometric research. In this context, factor analysis and other related techniques have been widely applied for the investigation of the internal structure of psychometric tests. However, these methods perform a linear dimensionality reduction under a series of assumptions that could not always be verified in psychological data. Predictive techniques, such as artificial neural networks, could complement and improve the exploration of latent space, overcoming the limits of traditional methods. In this study, we explore the latent space generated by a particular artificial neural network: the variational autoencoder. This autoencoder could perform a nonlinear dimensionality reduction and encourage the latent features to follow a predefined distribution (usually a normal distribution) by learning the most important relationships hidden in data. In this study, we investigate the capacity of autoencoders to model item-factor relationships in simulated data, which encompasses linear and nonlinear associations. We also extend our investigation to a real dataset. Results on simulated data show that the variational autoencoder performs similarly to factor analysis when the relationships among observed and latent variables are linear, and it is able to reproduce the factor scores. Moreover, results on nonlinear data show that, differently than factor analysis, it can also learn to reproduce nonlinear relationships among observed variables and factors. The factor score estimates are also more accurate with respect to factor analysis. The real case results confirm the potential of the autoencoder in reducing dimensionality with mild assumptions on input data and in recognizing the function that links observed and latent variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffff完成签到,获得积分10
1秒前
俏皮白云完成签到 ,获得积分10
1秒前
闻人华忆发布了新的文献求助10
1秒前
萨尔莫斯发布了新的文献求助10
1秒前
香菜完成签到,获得积分10
1秒前
HP关闭了HP文献求助
2秒前
2秒前
帅气的天抒完成签到,获得积分10
2秒前
Yandy发布了新的文献求助10
2秒前
科研通AI5应助雷涵晶采纳,获得10
2秒前
pawn完成签到,获得积分10
2秒前
曲初雪完成签到,获得积分10
3秒前
Brittany发布了新的文献求助10
3秒前
wcx发布了新的文献求助10
3秒前
3秒前
4秒前
哦哈哈完成签到 ,获得积分10
4秒前
科研通AI5应助鲸落采纳,获得10
4秒前
ffff发布了新的文献求助10
4秒前
好好学习完成签到,获得积分10
5秒前
wcy发布了新的文献求助10
7秒前
7秒前
7秒前
trap完成签到,获得积分20
7秒前
ECCE发布了新的文献求助10
8秒前
程破茧完成签到,获得积分10
8秒前
9秒前
SATone完成签到,获得积分10
10秒前
10秒前
冯123发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
小杨杨发布了新的文献求助10
11秒前
RY发布了新的文献求助10
11秒前
11秒前
羽雨完成签到,获得积分10
11秒前
2hi完成签到,获得积分10
12秒前
橘子完成签到 ,获得积分10
12秒前
afrex发布了新的文献求助10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747