Determination of major drive of ozone formation and improvement of O3 prediction in typical North China Plain based on interpretable random forest model

随机森林 臭氧 污染 空气污染 环境科学 风速 降水 相对湿度 大气科学 相关系数 风向 气候学 污染物 湿度 气象学 地理 化学 机器学习 计算机科学 统计 数学 地质学 生态学 有机化学 生物
作者
L. Yao,Han Yan,Xin Qi,Dasheng Huang,Hanxiong Che,Xin Long,Yang Du,Lingshuo Meng,Xiaojiang Yao,Liuyi Zhang,Chen Yang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:934: 173193-173193 被引量:4
标识
DOI:10.1016/j.scitotenv.2024.173193
摘要

O3 pollution in China has become prominent in recent years, and it has become one of the most challenging issues in air pollution control. We used data on atmospheric pollutants and meteorology from 2019 to 2021 to build an interpretable random forest (RF) model, applying this model to predict O3 concentration in 2022 in five cities in the Southwest North China Plain. The model was also used to identify and explain the influence of various factors on O3 formation. The correlation coefficient R2 between the predicted O3 concentration and observed O3 concentration was 0.82, the MAE was 15.15 μg/m3, and the RMSE was 20.29 μg/m3, indicating that the model can effectively predict O3 concentration in the studying area. The results of correlation analysis, feature importance, and the driving factor analysis from SHapley Additive exPlanations (SHAP) model indicated that temperature (T), NO2, and relative humidity (RH) are the top three features affecting O3 prediction, while the weights of wind speed and wind direction were relatively low. Thus, O3 in the southwestern region of Henan may mainly come from the formation of local photochemical activities. The dominant factors behind O3 also varied in different seasons. In spring and autumn, O3 pollution is more likely to occur under high NO2 concentration and high-temperature conditions, while in summer, it is more likely to occur under high-temperature and precipitation-free weather. In winter, NO2 is the dominant factor in O3 formation. Finally, the interpretable RF model is used to predict future O3 concentration based on features provided by Community Multiscale Air Quality (CMAQ) and Weather Research & Forecast (WRF) model, and the simulation performance of CMAQ on O3 concentration is enhanced to a certain extent, improving the prediction of future O3 pollution situations and guiding pollution control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十二发布了新的文献求助10
1秒前
祁祁完成签到,获得积分20
2秒前
qianqianqian发布了新的文献求助10
3秒前
3秒前
森sen完成签到 ,获得积分10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
李健应助Hiker采纳,获得10
7秒前
8秒前
8秒前
9秒前
kay发布了新的文献求助10
9秒前
JerryZ发布了新的文献求助10
10秒前
旧辞发布了新的文献求助10
10秒前
上官若男应助和谐的梦蕊采纳,获得10
11秒前
yyytr完成签到,获得积分10
11秒前
12秒前
烟花应助吴谷杂粮采纳,获得10
12秒前
lilyliu发布了新的文献求助10
13秒前
jhb发布了新的文献求助10
13秒前
13秒前
善学以致用应助kitty采纳,获得10
14秒前
上官若男应助不安乐菱采纳,获得30
14秒前
15秒前
007发布了新的文献求助10
16秒前
田様应助超帅凡阳采纳,获得10
16秒前
17秒前
葛藟萦藤发布了新的文献求助10
18秒前
狂野砖头发布了新的文献求助10
18秒前
lilyliu完成签到,获得积分10
20秒前
祁祁发布了新的文献求助30
21秒前
cv完成签到,获得积分20
21秒前
21秒前
齐嘉懿发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056