ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model

建筑 计算机科学 人工智能 卷积神经网络 编码器 变更检测 变压器 水准点(测量) 机器学习 地理 大地测量学 电压 视觉艺术 艺术 物理 操作系统 量子力学
作者
Hongruixuan Chen,Jian Song,Chengxi Han,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-20 被引量:48
标识
DOI:10.1109/tgrs.2024.3417253
摘要

Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD).However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets.Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures.In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks.We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively.All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images.For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information.On five benchmark datasets, our proposed frameworks outperform current CNN-and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks.Further experiments show that our architecture is quite robust to degraded data.The source code is available in https://github.com/ChenHongruixuan/MambaCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXXue完成签到 ,获得积分10
刚刚
Leon完成签到,获得积分10
刚刚
刚刚
伶俐的如凡完成签到 ,获得积分10
刚刚
1秒前
可爱的函函应助hlxhlx采纳,获得50
1秒前
ZZH完成签到,获得积分10
3秒前
林zp完成签到,获得积分10
3秒前
Heisenberg完成签到,获得积分10
4秒前
真正小白完成签到,获得积分10
5秒前
乐乐应助沉静的歌曲采纳,获得10
5秒前
5秒前
阿元完成签到,获得积分10
6秒前
6秒前
乔地完成签到,获得积分20
6秒前
TG_FY完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
orixero应助ccc采纳,获得10
7秒前
wanci应助222采纳,获得10
8秒前
9秒前
9秒前
ding应助Liangyu采纳,获得10
9秒前
10秒前
YY完成签到,获得积分10
10秒前
小圭发布了新的文献求助10
10秒前
乐乐应助牛马研究生采纳,获得10
10秒前
思源应助jingjing采纳,获得10
11秒前
fanyueyue应助自信大雁采纳,获得10
11秒前
李西瓜发布了新的文献求助10
13秒前
风中的大树完成签到,获得积分10
13秒前
闪闪的绝悟完成签到,获得积分10
13秒前
dou发布了新的文献求助10
13秒前
14秒前
pfangjin发布了新的文献求助10
14秒前
Wang完成签到,获得积分20
14秒前
斯文败类应助读书的时候采纳,获得10
14秒前
江河JT完成签到 ,获得积分10
15秒前
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4102593
求助须知:如何正确求助?哪些是违规求助? 3640294
关于积分的说明 11536146
捐赠科研通 3349327
什么是DOI,文献DOI怎么找? 1840317
邀请新用户注册赠送积分活动 907361
科研通“疑难数据库(出版商)”最低求助积分说明 824511