阴道加德纳菌
脆乳杆菌
乳酸菌
男科
细胞生长
下调和上调
生物
微生物学
细菌
信使核糖核酸
细胞
化学
医学
细菌性阴道病
生物化学
基因
遗传学
作者
Yan Xia,Yang Feng,Lan Jiang,Y. K. Heng,Xiaoqin Li,Cailing Ma
出处
期刊:Heliyon
[Elsevier BV]
日期:2024-06-01
卷期号:10 (12): e33426-e33426
标识
DOI:10.1016/j.heliyon.2024.e33426
摘要
This study aims to explore the impact of metabolites from three vaginal bacteria on the expression of Syndecan 1 (SDC-1). Human cervical epithelial cells (HcerEpic) were separately incubated with the cell-free supernatants of Lactobacillus crispatus (LCS group), Gardnerella vaginalis (GVS group), and Atopobium vaginalis (AVS group). LCS showed a proliferative effect on HcerEpic, with the most significant effect observed at a concentration of 30 % (P < 0.001). GVS and AVS exhibited some cytotoxicity, with significant growth inhibitory effects observed at concentrations of 30 % and 40 % (P < 0.01). Therefore, subsequent experiments were conducted using 30 % LCS, 40 % GVS, and 40 % AVS. In terms of cellular morphology, compared to the Control group, the LCS group showed more frequent fusion of cell sheets, with no obvious changes in the morphology of individual cells. In the GVS and AVS groups, some individual cells became round and smaller, with reduced protrusions and even a small amount of floating cells. The metabolic products of the three vaginal bacteria significantly upregulated the expression of IL-1β, IL-6, and TNF-α in HcerEpic (P < 0.05). In the GVS and AVS groups, the level of SDC-1 on the surface of HcerEpic was significantly decreased (P < 0.01), while the concentration of SDC-1 in the cell culture supernatant was significantly increased (P < 0.0001). Additionally, the level of SDC-1 mRNA was significantly downregulated (P < 0.01). In the LCS group, no significant changes were observed in SDC-1 protein and mRNA expression (P > 0.05). LCS promotes HcerEpic proliferation, without significant impact on SDC-1 expression and shedding. This provides molecular evidence for LCS as a protective factor against human papillomavirus infection in the cervix. Metabolites of GV and AV inhibit HcerEpic proliferation, induce cytokine secretion, suppress SDC-1 transcription and expression, and promote SDC-1 shedding.
科研通智能强力驱动
Strongly Powered by AbleSci AI