Automatic Searching of Lightweight and High-Performing CNN Architectures for EEG-based Driving Fatigue Detection

脑电图 计算机科学 人工智能 语音识别 模式识别(心理学) 计算机视觉 心理学 神经科学
作者
Qingqing Li,Zhirui Luo,Ruobin Qi,Jun Zheng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:5
标识
DOI:10.1109/tim.2024.3400360
摘要

The increasing number of vehicles has led to a rise in traffic accidents, with fatigued driving being a major contributing factor. Bio-electrical signals, particularly electroencephalograms (EEG), have emerged as a promising avenue for detecting driving fatigue. EEG signals can provide valuable insights into a person's brain activity and state of alertness. However, the complexity of EEG signals and the need for real-time detection pose significant challenges for traditional machine learning algorithms, leading to the growing popularity of deep learning in this domain. The objective of this paper is to design lightweight and high-performing convolutional neural network (CNN) models for detecting driving fatigue using multi-channel EEG signals. These models are intended to be deployed on resource-limited devices in intelligent vehicles, enabling timely alerts for fatigued driving. Rather than manually designing the deep neural network (DNN) architecture, we adopted the neural architecture search (NAS) approach to automate the architecture design process, considering both detection performance and computational cost. To evaluate the effectiveness of our approach, we conducted experiments using two publicly available EEG datasets widely used in driving fatigue detection studies. The performance of our NAS-derived model, named FD-LiteNet, was compared with a set of state-of-the-art baseline CNN models manually designed for EEG signal analysis. The results demonstrate that FD-LiteNet achieves significantly higher detection accuracy than all baseline models with a lower computational cost. Furthermore, our findings highlight the exceptional generalization capability of FD-LiteNet, as it can be fine-tuned with a small number of new samples to adapt to new datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娅娃儿完成签到 ,获得积分10
1秒前
沫荔发布了新的文献求助10
2秒前
皮卡丘完成签到 ,获得积分0
2秒前
王博士完成签到,获得积分10
2秒前
拼搏巧曼完成签到,获得积分20
2秒前
优雅的雁凡完成签到,获得积分10
4秒前
zxxx完成签到,获得积分10
5秒前
fyjlfy完成签到 ,获得积分10
5秒前
Orange应助张二十八采纳,获得10
5秒前
222完成签到 ,获得积分10
7秒前
饿哭了塞完成签到 ,获得积分10
8秒前
伯爵完成签到 ,获得积分10
8秒前
小黑完成签到,获得积分10
9秒前
萧水白发布了新的文献求助100
9秒前
青炀完成签到,获得积分10
9秒前
zbclzf完成签到,获得积分10
10秒前
寒江孤影完成签到,获得积分10
10秒前
zzz完成签到,获得积分10
12秒前
图图完成签到,获得积分10
13秒前
duan完成签到 ,获得积分10
15秒前
15秒前
wanci应助燕子采纳,获得30
17秒前
阔达尔芙发布了新的文献求助10
17秒前
17秒前
核桃应助心无杂念采纳,获得10
22秒前
小美女完成签到 ,获得积分10
24秒前
天天快乐应助shi采纳,获得30
24秒前
111完成签到 ,获得积分10
24秒前
25秒前
阔达尔芙完成签到,获得积分10
26秒前
感动清炎完成签到,获得积分10
27秒前
tong完成签到,获得积分10
27秒前
屠夫9441完成签到 ,获得积分10
29秒前
Amosummer完成签到,获得积分10
29秒前
尼古拉耶维奇完成签到,获得积分10
30秒前
样子发布了新的文献求助10
31秒前
冷艳的白莲完成签到,获得积分10
31秒前
lhc完成签到,获得积分10
31秒前
dizi完成签到 ,获得积分10
31秒前
zhang完成签到,获得积分10
32秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4087073
求助须知:如何正确求助?哪些是违规求助? 3625913
关于积分的说明 11497981
捐赠科研通 3339227
什么是DOI,文献DOI怎么找? 1835811
邀请新用户注册赠送积分活动 904002
科研通“疑难数据库(出版商)”最低求助积分说明 822032