A DeNoising FPN With Transformer R-CNN for Tiny Object Detection

计算机科学 降噪 目标检测 人工智能 变压器 计算机视觉 模式识别(心理学) 电压 工程类 电气工程
作者
Hou-I Liu,Yu‐Wen Tseng,Kai-Cheng Chang,Pin-Jyun Wang,Hong-Han Shuai,Hao‐Wen Cheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2024.3396489
摘要

Despite notable advancements in the field of computer vision, the precise detection of tiny objects continues to pose a significant challenge, largely owing to the minuscule pixel representation allocated to these objects in imagery data. This challenge resonates profoundly in the domain of geoscience and remote sensing, where high-fidelity detection of tiny objects can facilitate a myriad of applications ranging from urban planning to environmental monitoring. In this paper, we propose a new framework, namely, DeNoising FPN with Trans R-CNN (DNTR), to improve the performance of tiny object detection. DNTR consists of an easy plug-in design, DeNoising FPN (DN-FPN), and an effective Transformer-based detector, Trans R-CNN. Specifically, feature fusion in the feature pyramid network is important for detecting multiscale objects. However, noisy features may be produced during the fusion process since there is no regularization between the features of different scales. Therefore, we introduce a DN-FPN module that utilizes contrastive learning to suppress noise in each level's features in the top-down path of FPN. Second, based on the two-stage framework, we replace the obsolete R-CNN detector with a novel Trans R-CNN detector to focus on the representation of tiny objects with self-attention. Experimental results manifest that our DNTR outperforms the baselines by at least 17.4% in terms of AP vt on the AI-TOD dataset and 9.6% in terms of AP on the VisDrone dataset, respectively. Our code will be available at https://github.com/hoiliu-0801/DNTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roselau完成签到,获得积分10
刚刚
我一拳打树上完成签到,获得积分10
刚刚
1秒前
古月完成签到,获得积分10
1秒前
雪白的紫翠完成签到 ,获得积分10
1秒前
1秒前
2秒前
WangY1263发布了新的文献求助10
2秒前
iwhisper完成签到,获得积分10
2秒前
漫画完成签到,获得积分10
2秒前
竹子完成签到,获得积分10
2秒前
悠然地八音完成签到,获得积分10
3秒前
小米发布了新的文献求助10
3秒前
下课了吧完成签到,获得积分10
3秒前
Xu完成签到 ,获得积分10
3秒前
zhuo完成签到,获得积分10
3秒前
态度完成签到,获得积分10
3秒前
挥发的费洛蒙完成签到,获得积分20
4秒前
fvsuar完成签到,获得积分10
4秒前
充电宝应助Sunly采纳,获得10
5秒前
慈祥的白猫完成签到,获得积分10
5秒前
世界上最后一只呜呜怪完成签到,获得积分10
5秒前
科研顺完成签到,获得积分10
5秒前
听风完成签到,获得积分10
5秒前
6秒前
科研通AI5应助从容傲柏采纳,获得10
6秒前
孝顺的柠檬完成签到,获得积分10
7秒前
xfy完成签到,获得积分10
7秒前
11111112222完成签到,获得积分10
8秒前
8秒前
愉快凌晴完成签到 ,获得积分10
8秒前
boya完成签到,获得积分10
8秒前
yang发布了新的文献求助10
9秒前
芋圆不圆完成签到,获得积分10
9秒前
9秒前
吃不胖的完成签到,获得积分10
9秒前
vv的平行宇宙完成签到,获得积分10
10秒前
科研顺发布了新的文献求助10
10秒前
落木萧萧完成签到,获得积分10
10秒前
10秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369790
关于积分的说明 10457969
捐赠科研通 3089470
什么是DOI,文献DOI怎么找? 1699905
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263