Reaction mechanism study and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component combination analysis

热失控 锂离子电池 阳极 分离器(采油) 电池(电) 阴极 化学 电解质 分析化学(期刊) 锂(药物) 材料科学 热力学 电极 物理化学 医学 功率(物理) 物理 色谱法 内分泌学
作者
Minuk Kim,Jaeyoung Jeon,Jongsup Hong
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:471: 144434-144434 被引量:16
标识
DOI:10.1016/j.cej.2023.144434
摘要

To diagnose and elucidate thermal runaway accompanying gas evolution of a lithium-ion battery, it is essential to understand the thermal side reactions that lead to thermal runaway inside a lithium-ion battery. It is very useful to make a reliable model that represents these reactions to analyze thermal runaway processes in order to secure battery safety and overcome high costs of large-scale experiments. This study proposes the reaction mechanism and the reaction model through the design of experiments with the combination of battery components such as a cathode, an anode, an electrolyte, and a separator. To develop the reaction mechanism, the peak temperature and calorific value of each reaction are obtained by using a differential scanning calorimeter. The change of mass and produced gas from each reaction are identified by using an online thermogravimetry-mass spectrometer. Based on these measurements, the reaction model is developed by estimating kinetic parameters obtained from the Kissinger analysis. The reaction model exhibits root-mean-square-error of 1.91 mW, 21.79 mW, and 4.53 mW in the electrolyte, the cathode and the anode, respectively, as compared to differential scanning calorimeter results, confirming its high fidelity. The proposed model illustrates the variation of volume fractions of each phase inside a lithium-ion battery to simulate electrochemical performance degradation during thermal runaway stage. The change in internal pressure is also evaluated by using the change in mass and volume of each phase. Based on the mechanism and model derived from this study, it is possible to pinpoint the electrochemical performance degradation and heat generation characteristics during thermal runaway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾米发布了新的文献求助10
1秒前
Slhy完成签到 ,获得积分10
1秒前
思源应助miu采纳,获得10
1秒前
YQQ完成签到,获得积分10
2秒前
火星上的飞柏完成签到,获得积分10
3秒前
6秒前
科目三应助zoro采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
牧长一完成签到 ,获得积分0
8秒前
机智向薇发布了新的文献求助10
9秒前
高思博发布了新的文献求助10
9秒前
磊大彪完成签到,获得积分20
12秒前
14秒前
fbdenrnb发布了新的文献求助10
17秒前
华仔应助虾米采纳,获得10
18秒前
Orange应助虾米采纳,获得10
18秒前
wwwzy完成签到,获得积分20
27秒前
27秒前
clock完成签到 ,获得积分10
28秒前
龙舞星完成签到,获得积分10
30秒前
Genji发布了新的文献求助10
32秒前
小酸奶完成签到,获得积分10
32秒前
fbdenrnb完成签到,获得积分10
33秒前
我是老大应助加菲丰丰采纳,获得10
37秒前
42秒前
Twelve驳回了乐乐应助
43秒前
华仔应助吗喽大人采纳,获得10
46秒前
ZW完成签到,获得积分10
49秒前
爆米花应助wwwzy采纳,获得10
50秒前
Owen应助称心寒松采纳,获得10
54秒前
写个锤子完成签到,获得积分10
1分钟前
qiao给大知闲闲的求助进行了留言
1分钟前
潘贤铖完成签到,获得积分10
1分钟前
empty关注了科研通微信公众号
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751