Reaction mechanism study and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component combination analysis

热失控 锂离子电池 阳极 分离器(采油) 电池(电) 阴极 化学 电解质 分析化学(期刊) 锂(药物) 材料科学 热力学 电极 物理化学 物理 功率(物理) 内分泌学 医学 色谱法
作者
Minuk Kim,Jaeyoung Jeon,Jongsup Hong
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:471: 144434-144434 被引量:33
标识
DOI:10.1016/j.cej.2023.144434
摘要

To diagnose and elucidate thermal runaway accompanying gas evolution of a lithium-ion battery, it is essential to understand the thermal side reactions that lead to thermal runaway inside a lithium-ion battery. It is very useful to make a reliable model that represents these reactions to analyze thermal runaway processes in order to secure battery safety and overcome high costs of large-scale experiments. This study proposes the reaction mechanism and the reaction model through the design of experiments with the combination of battery components such as a cathode, an anode, an electrolyte, and a separator. To develop the reaction mechanism, the peak temperature and calorific value of each reaction are obtained by using a differential scanning calorimeter. The change of mass and produced gas from each reaction are identified by using an online thermogravimetry-mass spectrometer. Based on these measurements, the reaction model is developed by estimating kinetic parameters obtained from the Kissinger analysis. The reaction model exhibits root-mean-square-error of 1.91 mW, 21.79 mW, and 4.53 mW in the electrolyte, the cathode and the anode, respectively, as compared to differential scanning calorimeter results, confirming its high fidelity. The proposed model illustrates the variation of volume fractions of each phase inside a lithium-ion battery to simulate electrochemical performance degradation during thermal runaway stage. The change in internal pressure is also evaluated by using the change in mass and volume of each phase. Based on the mechanism and model derived from this study, it is possible to pinpoint the electrochemical performance degradation and heat generation characteristics during thermal runaway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助JIMMY采纳,获得10
刚刚
3秒前
上官若男应助熊二采纳,获得10
4秒前
jessica发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
空明流毓发布了新的文献求助10
5秒前
大力海秋发布了新的文献求助10
5秒前
6秒前
6秒前
飘逸夜白发布了新的文献求助10
6秒前
Harry应助封芷采纳,获得10
7秒前
7秒前
小帅哥发布了新的文献求助10
7秒前
7秒前
Hello应助知性的凡梅采纳,获得10
8秒前
Lynn完成签到,获得积分10
8秒前
gjgy发布了新的文献求助10
10秒前
fu发布了新的文献求助10
10秒前
yihua完成签到,获得积分20
12秒前
嘿嘿嘿发布了新的文献求助10
12秒前
典雅友蕊发布了新的文献求助10
12秒前
蝉鸣完成签到 ,获得积分10
12秒前
曹曹发布了新的文献求助10
13秒前
13秒前
天天快乐应助钙离子采纳,获得10
13秒前
13秒前
14秒前
收破烂的要不完成签到 ,获得积分10
15秒前
dun完成签到 ,获得积分10
15秒前
俭朴的道之完成签到,获得积分10
16秒前
SciGPT应助111采纳,获得10
17秒前
远方发布了新的文献求助10
18秒前
嘿嘿嘿完成签到,获得积分10
18秒前
科研通AI6应助虾小虾采纳,获得10
18秒前
xiaozhang发布了新的文献求助10
19秒前
20秒前
20秒前
自觉的涵易完成签到 ,获得积分10
20秒前
20秒前
脑洞疼应助L-g-b采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528034
求助须知:如何正确求助?哪些是违规求助? 4617692
关于积分的说明 14559910
捐赠科研通 4556440
什么是DOI,文献DOI怎么找? 2496898
邀请新用户注册赠送积分活动 1477192
关于科研通互助平台的介绍 1448513