人工智能
计算机科学
图像分割
计算机视觉
分割
尺度空间分割
模式识别(心理学)
作者
Hong Peng,Ning Niu,Yilin Zhang,Guanjun Wang,Chenyang Xue,Mengxing Huang
摘要
Image segmentation is a critical technology in many fields, such as image processing, pattern recognition, and artificial intelligence. It is also the first and critical step in computer vision technology. Tongue diagnosis combined with deep learning for segmentation and extracting pathological features is relatively mature, but deep learning combined with TCM visualization is sporadic. First, We used the U2Net network1 for segmentation extraction of the sclera in this study. Where the U2Net1 network1 (based on PyTorch) relies on the extensive use of data enhancements to use the available annotation samples more efficiently, and compared with the U-Net network, the U2Net network1 updates an RSU module, each RSU module is a small U-net network,merging multiple U-Net outputs to get the merged Mask target. Finally, we applied classical CNN networks to evaluate the segmentation effect, introducing different evaluation metrics such as Miou, Precision, and Recall. We used the publicly available dataset UBIVIS.V12 for our experiments, where our Miou was as high as 97.3%, and U2Net achieved better results among all the networks, which laid the foundation for our subsequent segmentation and extraction of blood filament features.
科研通智能强力驱动
Strongly Powered by AbleSci AI