Large Language Models for Translational Cancer Informatics

信息学 计算机科学 癌症 转化研究 数据科学 医学 政治学 病理 内科学 法学
作者
Yining Pan,Yanfei Wang,Guangyu Wang,Jing Su,Ümit Topaloğlu,Qianqian Song
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:9 (9): e2500108-e2500108 被引量:1
标识
DOI:10.1200/cci-25-00108
摘要

PURPOSE Cancer remains a leading cause of death worldwide. The growing volume of high-throughput single-cell and spatial transcriptomic data sets—particularly those related to cancer—offers immense opportunities as well as analytical challenges for effective data analysis and interpretation. Large language models (LLMs), pretrained on vast data sets and capable of various biomedical tasks, offer a promising solution. This review explores the application of LLMs in cancer research from both cellular and pathologic perspectives, aiming to showcase their potential in advancing precision oncology. MATERIALS AND METHODS We systematically review current LLMs in analyzing single-cell RNA sequencing, spatial transcriptomic, and histology image data, emphasizing their relevance to cancer biology and translational research. RESULTS A total of 24 LLMs, published or in preprint between 2022 and 2025, were selected for review. In single-cell transcriptomics, LLMs have primarily been used for cell type annotation, batch integration, and drug-response prediction. In spatial transcriptomics, LLMs support multislide and multimodal spatial data integration, gene expression imputation, niche and region label prediction, spatial domain identification, cell-cell communication inference, and marker gene detection. In computational pathology, LLMs have been applied to cancer subtyping, detection of rare malignancies, genomic mutation prediction, image segmentation, as well as cross-modal retrieval. Despite these advances, many models remain underoptimized for cancer-specific applications, highlighting the need for domain-specific fine-tuning and scalable adaptation strategies. CONCLUSION LLMs have the potential to significantly advance cancer research by providing scalable and effective tools for analyzing and interpreting single-cell, spatial transcriptomic, and pathology data. Future efforts should prioritize tailoring these models to cancer-specific contexts to enhance their utility in uncovering disease mechanisms, identifying biomarkers, and informing therapeutic strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助zjl采纳,获得10
刚刚
不安的橘子完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
今后应助NL采纳,获得10
3秒前
静待花开发布了新的文献求助10
3秒前
震动的雪一完成签到,获得积分10
3秒前
4秒前
4秒前
blackddl应助xl采纳,获得20
5秒前
5秒前
酷炫的不二完成签到,获得积分10
5秒前
可爱的函函应助Hey采纳,获得10
5秒前
豚豚发布了新的文献求助10
5秒前
FashionBoy应助羊肉采纳,获得10
5秒前
李健应助风趣惜灵采纳,获得10
6秒前
Li关闭了Li文献求助
6秒前
7秒前
momo发布了新的文献求助10
7秒前
8秒前
8秒前
keanu发布了新的文献求助10
9秒前
9秒前
ran发布了新的文献求助10
10秒前
灿星发布了新的文献求助10
10秒前
11秒前
11秒前
14秒前
怡神001发布了新的文献求助30
14秒前
Lucas应助等待纸鹤采纳,获得10
14秒前
15秒前
小蘑菇应助健康的鸽子采纳,获得10
15秒前
15秒前
Left发布了新的文献求助10
15秒前
人老多情给人老多情的求助进行了留言
16秒前
江屿完成签到,获得积分10
17秒前
嘿嘿发布了新的文献求助10
17秒前
李治稳发布了新的文献求助10
17秒前
水123发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293