Multi‐Beam and Side‐Scan Sonar Image Registration of Submarine Pipeline Based on Phase Congruency

侧扫声纳 声纳 潜艇 管道(软件) 人工智能 计算机视觉 相(物质) 地质学 计算机科学 遥感 图像(数学) 梁(结构) 声学 海洋工程 大地测量学 光学 工程类 物理 海洋学 量子力学 程序设计语言
作者
Xuerong Cui,Ruxue Yan,Juan Li,Jingyao Zhang,Bin Jiang,Lei Li
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.70108
摘要

Submarine pipeline is the “main artery” of marine oil and gas transportation, which needs to be detected regularly. However, it is difficult for a single detection equipment to comprehensively analyze and identify the state of the pipeline. Multi‐beam echo sounder can obtain sonar images with accurate position information, and side‐scan sonar system can obtain sonar images with rich texture information, which are complementary to each other. Therefore, in order to accurately fuse these two different sources of seafloor images together, it is necessary to register them. To this end, a new image registration method of multi‐beam and side‐scan sonar based on phase congruency is proposed in this paper. First, the phase congruency model calculation is carried out in the feature extraction stage to obtain the maximum and minimum moments of phase congruency, and the maximum moment map is combined with Canny edge detection. Then the improved Harris corner detection operator and FAST detection operator are used to detect the edge features and corner features, respectively, to obtain stable edge and corner points as the feature points to be matched. Then in the feature description stage, the maximum index map (MIM) feature descriptor is constructed using the improved spatial structure based on the GLOH descriptor and combined with the SURF feature descriptor to form a hybrid descriptor. Finally, in the feature matching stage, the similarity metric of the descriptors is carried out by a two‐stage metric strategy to obtain homonymous point pairs, and the false matches are eliminated by fast sample consensus (FSC) to finally realize the image registration. Experimental results on multiple sets of sonar image data show that the algorithm proposed in this paper exhibits excellent performance in terms of both image matching accuracy and registration precision. © 2025 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zb完成签到,获得积分10
2秒前
p泽完成签到,获得积分20
2秒前
George完成签到,获得积分10
2秒前
小太阳完成签到,获得积分10
3秒前
甜美的瑾瑜完成签到,获得积分10
3秒前
4秒前
lu525完成签到 ,获得积分10
5秒前
李超完成签到,获得积分10
6秒前
彭于晏应助ZZD采纳,获得10
6秒前
鸣笛应助xu采纳,获得30
6秒前
天天快乐应助小任一定行采纳,获得10
7秒前
wyz完成签到,获得积分10
8秒前
KevenDing完成签到,获得积分10
8秒前
lbj曾经的你完成签到,获得积分10
8秒前
vadfdfb完成签到,获得积分10
8秒前
9秒前
大气乐儿完成签到,获得积分10
10秒前
积极从蕾应助p泽采纳,获得10
10秒前
enen123发布了新的文献求助10
11秒前
lucky完成签到,获得积分10
12秒前
天天快乐应助orchid采纳,获得10
12秒前
Akim应助仁爱平文采纳,获得10
13秒前
李小新完成签到 ,获得积分10
13秒前
wyz发布了新的文献求助10
13秒前
13秒前
14秒前
xu完成签到,获得积分10
15秒前
HaoTu应助闾丘明雪采纳,获得10
15秒前
悦耳梦松完成签到 ,获得积分10
15秒前
XY完成签到,获得积分10
18秒前
ZZD发布了新的文献求助10
18秒前
Wade完成签到 ,获得积分10
19秒前
YY发布了新的文献求助10
19秒前
鱼尾雯完成签到,获得积分10
23秒前
23秒前
24秒前
Ruadong完成签到,获得积分10
24秒前
24秒前
hebrews完成签到,获得积分10
25秒前
狗宅完成签到,获得积分10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4168856
求助须知:如何正确求助?哪些是违规求助? 3704336
关于积分的说明 11690755
捐赠科研通 3391198
什么是DOI,文献DOI怎么找? 1859876
邀请新用户注册赠送积分活动 920112
科研通“疑难数据库(出版商)”最低求助积分说明 832548