Ultrahigh-Throughput Virtual Screening Strategies against PPI Targets: A Case Study of STAT Inhibitors

斯达 虚拟筛选 吞吐量 高通量筛选 计算机科学 计算生物学 药物发现 化学 生物 电信 信号转导 生物化学 无线 车站3
作者
Tibor Viktor Szalai,Nikolett Péczka,Levente Sipos-Szabó,László Petri,Dávid Bajusz,György M. Keserű
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00907
摘要

In recent years, virtual screening of ultralarge (108+) libraries of synthetically accessible compounds (uHTVS) became a popular approach in hit identification. With AI-assisted virtual screening workflows, such as Deep Docking, these protocols might be feasible even without supercomputers. Yet, these methodologies have their own conceptual limitations, including the fact that physics-based docking is replaced by a cheaper deep learning (DL) step for the vast majority of compounds. In turn, the performance of this DL step will highly depend on the performance of the underlying docking model that is used to evaluate parts of the whole data set to train the DL architecture itself. Here, we evaluated the performance of the popular Deep Docking workflow on compound libraries of different sizes, against benchmark cases of classic brute-force docking approaches conducted on smaller libraries. We were especially interested in more difficult, protein-protein interaction-type oncotargets where the reliability of the underlying docking model is harder to assess. Specifically, our virtual screens have resulted in several new inhibitors of two oncogenic transcription factors, STAT3 and STAT5b. For STAT5b, in particular, we disclose the first application of virtual screening against its N-terminal domain, whose importance was recognized more recently. While the AI-based uHTVS is computationally more demanding, it can achieve exceptionally good hit rates (50.0% for STAT3). Deep Docking can also work well with a compound library containing only several million (instead of several billion) compounds, achieving a 42.9% hit rate against the SH2 domain of STAT5b, while presenting a highly economic workflow with just under 120,000 compounds actually docked.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助金金采纳,获得10
1秒前
JamesPei应助nh采纳,获得10
1秒前
怡然含桃发布了新的文献求助10
2秒前
2秒前
cco完成签到,获得积分20
2秒前
3秒前
3秒前
asss发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
ph发布了新的文献求助10
5秒前
王浩发布了新的文献求助10
5秒前
LIB完成签到,获得积分10
6秒前
6秒前
秋鱼完成签到,获得积分10
6秒前
7秒前
科研通AI5应助流光采纳,获得10
7秒前
7秒前
lagom完成签到,获得积分10
7秒前
缥莲发布了新的文献求助20
8秒前
8秒前
危险份子发布了新的文献求助10
9秒前
李奥阁完成签到,获得积分10
9秒前
我是老大应助mm浮生诺梦采纳,获得10
9秒前
多情鹏涛发布了新的文献求助10
9秒前
liangyuting发布了新的文献求助10
10秒前
脑洞疼应助怡然含桃采纳,获得10
10秒前
严婉蓉完成签到 ,获得积分10
10秒前
11秒前
tomorrow发布了新的文献求助10
11秒前
充电宝应助小新采纳,获得10
11秒前
科研通AI5应助刻苦的盼烟采纳,获得10
12秒前
刘旭成完成签到,获得积分20
12秒前
12秒前
于忠波发布了新的文献求助10
12秒前
cyh时代完成签到 ,获得积分10
13秒前
李健应助痴情的寒云采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4490817
求助须知:如何正确求助?哪些是违规求助? 3944454
关于积分的说明 12232052
捐赠科研通 3601450
什么是DOI,文献DOI怎么找? 1980705
邀请新用户注册赠送积分活动 1017654
科研通“疑难数据库(出版商)”最低求助积分说明 910573