An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm

光伏系统 算法 人口 计算机科学 数学优化 数学 工程类 人口学 社会学 电气工程
作者
Adam Słowik,Krzysztof Cpałka,Yu Xue,Aneta Hapka
出处
期刊:Applied Energy [Elsevier BV]
卷期号:364: 123208-123208 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123208
摘要

This article discusses the problem of accurate and efficient modeling of photovoltaic (PV) panels. It is a highly nonlinear problem. The following models were considered: a single diode model, a double diode model, a triple diode model, a four diode model, a module model (a poly-crystalline Photowatt-PWP201 module and a mono-crystalline STM6-40/36 module). The article presents a mathematical notation of these models, a detailed interpretation of their individual components, and a comparison of obtained results. To increase the effectiveness of modeling, a new population-based algorithm which can handle complex objective functions and a large number of decision variables was developed. This is important for the problem of identifying the parameters of PV cell models because each evaluation of the objective function requires calculating a set of points that determine the current–voltage characteristics. Moreover, in the considered problem a solution is searched with the use of the trial and error method. The proposed algorithm is called Micro Adaptive Fuzzy Cuckoo Search Optimization (μAFCSO). The μAFCSO algorithm uses several new mechanisms that were developed based on our experience with population-based algorithms. The use of these mechanisms has produced very good results in simulations. In the scope of simulation studies, the μAFCSO algorithm was used for parameter extraction in six PV cell models and was also applied to optimize fifteen typical test functions. The test functions were considered in order to demonstrate that our algorithm can be used to solve typical problems processed using population-based algorithms. The results obtained in this study were compared with the results obtained using well-established algorithms. The results obtained in this work are better or comparable to them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不语完成签到,获得积分10
刚刚
Birdy发布了新的文献求助10
刚刚
asdzzc发布了新的文献求助10
1秒前
DYDSA完成签到,获得积分10
1秒前
2秒前
花生完成签到 ,获得积分10
3秒前
3秒前
3秒前
大鱼发布了新的文献求助10
3秒前
3秒前
4秒前
NexusExplorer应助一念初见采纳,获得10
4秒前
小么完成签到 ,获得积分10
4秒前
你说要叫啥完成签到,获得积分10
4秒前
4秒前
许愿非树完成签到,获得积分10
5秒前
搜集达人应助临诗采纳,获得10
5秒前
淡水痕完成签到,获得积分10
5秒前
JamesPei应助MiLi采纳,获得10
5秒前
Clovis33发布了新的文献求助10
6秒前
6秒前
冷酷的菲音完成签到,获得积分10
7秒前
YH完成签到,获得积分10
7秒前
FJ发布了新的文献求助10
7秒前
啥子那完成签到,获得积分10
7秒前
Gavin发布了新的文献求助10
7秒前
www完成签到,获得积分10
7秒前
凉小远完成签到,获得积分10
7秒前
8秒前
搞怪大炮完成签到 ,获得积分10
8秒前
闷油瓶发布了新的文献求助20
8秒前
8秒前
Lareina发布了新的文献求助10
8秒前
思源应助昵称被注册完了采纳,获得10
8秒前
9秒前
dong发布了新的文献求助10
9秒前
被动科研完成签到,获得积分10
9秒前
10秒前
Hello应助质延采纳,获得10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578