A dual-branch joint learning network for underwater object detection

水下 对偶(语法数字) 接头(建筑物) 计算机科学 人工智能 对象(语法) 目标检测 计算机视觉 模式识别(心理学) 地质学 工程类 海洋学 建筑工程 艺术 文学类
作者
Bowen Wang,Zhi Wang,Wenhui Guo,Yanjiang Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:293: 111672-111672 被引量:4
标识
DOI:10.1016/j.knosys.2024.111672
摘要

Underwater object detection (UOD) is crucial for developing marine resources, environmental monitoring, and ecological protection. However, the degradation of underwater images limits the performance of object detectors. Most existing schemes treat underwater image enhancement (UIE) and UOD as two independent tasks, which take UIE as a preprocessing step to reduce the degradation problem, thus being unable to improve the detection accuracy effectively. Therefore, in this paper, we propose a dual-branch joint learning network (DJL-Net) that combines image processing and object detection through multi-task joint learning to construct an end-to-end model for underwater detection. With the dual-branch structure, DJL-Net can use the enhanced images generated by the image-processing module to supplement the features lost due to the degradation of the original underwater images. Specifically, DJL-Net first employs an image decolorization module governed by the detection loss, generating gray images to eliminate color disturbances stemming from underwater light absorption and scattering effects. An improved edge enhancement module is utilized to enhance the shape and texture expression in gray images and improve the recognition of object boundary features. Then, the generated edge-enhanced gray images and their original underwater images are input into the two branches to learn different types of features. Finally, a tridimensional adaptive gated feature fusion module is proposed to effectively fuse the complementary features learned from the two branches. Comprehensive experiments on four UOD datasets, including some scenes with challenging underwater environments, demonstrate the effectiveness and robustness of the proposed DJL-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限猕猴桃应助leo采纳,获得10
2秒前
3秒前
4秒前
兴奋的冰棍完成签到,获得积分10
4秒前
5秒前
Zo完成签到,获得积分10
6秒前
8秒前
L.发布了新的文献求助10
11秒前
汉堡包应助蟹蟹采纳,获得10
11秒前
慕青应助义气的行天采纳,获得10
12秒前
wake发布了新的文献求助10
14秒前
呆鸥完成签到,获得积分10
15秒前
16秒前
16秒前
12356完成签到,获得积分10
17秒前
littlepuppy发布了新的文献求助10
21秒前
大先生完成签到,获得积分10
22秒前
22秒前
Micheal完成签到,获得积分10
23秒前
共享精神应助屿杓采纳,获得10
25秒前
SciGPT应助菠萝吹雪花啤采纳,获得10
26秒前
BingyuLi完成签到,获得积分10
26秒前
彭于彦祖应助大先生采纳,获得20
27秒前
27秒前
CodeCraft应助littlepuppy采纳,获得10
29秒前
30秒前
乐乐应助sctaaa采纳,获得10
30秒前
123456完成签到,获得积分10
31秒前
是真的宇航员啊完成签到,获得积分10
32秒前
MJ发布了新的文献求助10
32秒前
brucezheng完成签到,获得积分10
33秒前
34秒前
大喜子完成签到,获得积分10
34秒前
屿杓发布了新的文献求助10
36秒前
隐形曼青应助brucezheng采纳,获得10
37秒前
37秒前
38秒前
38秒前
who完成签到,获得积分20
38秒前
冷静的胜完成签到,获得积分10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843667
求助须知:如何正确求助?哪些是违规求助? 3385966
关于积分的说明 10543359
捐赠科研通 3106778
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823925
科研通“疑难数据库(出版商)”最低求助积分说明 774390