A dual-branch joint learning network for underwater object detection

水下 对偶(语法数字) 接头(建筑物) 计算机科学 人工智能 对象(语法) 目标检测 计算机视觉 模式识别(心理学) 地质学 工程类 海洋学 建筑工程 艺术 文学类
作者
Bowen Wang,Zhi Wang,Wenhui Guo,Yanjiang Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111672-111672 被引量:30
标识
DOI:10.1016/j.knosys.2024.111672
摘要

Underwater object detection (UOD) is crucial for developing marine resources, environmental monitoring, and ecological protection. However, the degradation of underwater images limits the performance of object detectors. Most existing schemes treat underwater image enhancement (UIE) and UOD as two independent tasks, which take UIE as a preprocessing step to reduce the degradation problem, thus being unable to improve the detection accuracy effectively. Therefore, in this paper, we propose a dual-branch joint learning network (DJL-Net) that combines image processing and object detection through multi-task joint learning to construct an end-to-end model for underwater detection. With the dual-branch structure, DJL-Net can use the enhanced images generated by the image-processing module to supplement the features lost due to the degradation of the original underwater images. Specifically, DJL-Net first employs an image decolorization module governed by the detection loss, generating gray images to eliminate color disturbances stemming from underwater light absorption and scattering effects. An improved edge enhancement module is utilized to enhance the shape and texture expression in gray images and improve the recognition of object boundary features. Then, the generated edge-enhanced gray images and their original underwater images are input into the two branches to learn different types of features. Finally, a tridimensional adaptive gated feature fusion module is proposed to effectively fuse the complementary features learned from the two branches. Comprehensive experiments on four UOD datasets, including some scenes with challenging underwater environments, demonstrate the effectiveness and robustness of the proposed DJL-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
hjq发布了新的文献求助10
1秒前
隐形星空应助Edelweiss采纳,获得10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
tubby发布了新的文献求助10
3秒前
3秒前
4秒前
Thi发布了新的文献求助10
4秒前
鳗鱼灰狼发布了新的文献求助10
5秒前
6秒前
CodeCraft应助张昌辉采纳,获得10
6秒前
六六发布了新的文献求助20
6秒前
12138完成签到,获得积分10
6秒前
呆呆发布了新的文献求助10
7秒前
Niki完成签到,获得积分10
7秒前
所所应助pililili采纳,获得10
8秒前
8秒前
spirit发布了新的文献求助10
9秒前
9秒前
li完成签到,获得积分10
10秒前
10秒前
大个应助kk摆烂采纳,获得10
10秒前
liyu发布了新的文献求助10
13秒前
13秒前
14秒前
57r7uf发布了新的文献求助30
15秒前
16秒前
虾虾发布了新的文献求助10
16秒前
17秒前
在水一方应助huhubei采纳,获得10
19秒前
wangli发布了新的文献求助10
19秒前
深情安青应助zmy采纳,获得10
20秒前
20秒前
cm完成签到,获得积分10
21秒前
Hello应助鳗鱼灰狼采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492586
求助须知:如何正确求助?哪些是违规求助? 4590623
关于积分的说明 14431212
捐赠科研通 4523084
什么是DOI,文献DOI怎么找? 2478175
邀请新用户注册赠送积分活动 1463195
关于科研通互助平台的介绍 1435900