“Predicting intraocular lens tilt using a machine learning concept”

倾斜(摄像机) 小学生 医学 镜头(地质) 白内障手术 眼科 人工智能 验光服务 数学 计算机科学 光学 物理 几何学
作者
Klemens Waser,Andreas Honeder,Nino Hirnschall,Haidar Khalil,Leon Pomberger,Peter Laubichler,Siegfried Mariacher,Matthias Bolz
出处
期刊:Journal of Cataract and Refractive Surgery [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1097/j.jcrs.0000000000001452
摘要

Objective: Aim of this study was to use a combination of partial least squares regression and a machine learning approach to predict IOL tilt using pre-operative biometry data. Setting: Patients scheduled for cataract surgery at the Kepler University Clinic Linz Design: Prospective single center study Methods: Optical coherence tomography, autorefraction and subjective refraction was performed at baseline and 8 weeks after cataract surgery. In analysis I only one eye per patient was included and a tilt prediction model was generated. In analysis II a pair-wise comparison between right and left eyes was performed. Results: In analysis I 50 eyes of 50 patients were analysed. Difference in amount, orientation and vector from pre- to post-operative lens tilt was -0.13°, 2.14° and 1.20° respectively. A high predictive power (variable importance for projection) for post-operative tilt prediction was found for pre-operative tilt (VIP=2.2), pupil decentration (VIP=1.5), lens thickness (VIP=1.1), axial eye length (VIP=0.9) and pre-operative lens decentration (VIP=0.8). These variables were applied to a machine learning algorithm resulting in an out of bag score of 0.92°. In analysis II 76 eyes of 38 patients were included. The difference of pre- to post-operative IOL tilt of right and left eyes of the same individuum was statistically relevant. Conclusion: Post-operative IOL tilt showed excellent predictability using pre-operative biometry data and a combination of partial least squares regression and a machine learning algorithm. Pre-operative lens tilt, pupil decentration, lens thickness, axial eye length and pre-operative lens decentration were found to be the most relevant parameters for this prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的胜完成签到,获得积分10
1秒前
机灵夜云完成签到,获得积分10
3秒前
baroque完成签到 ,获得积分10
4秒前
4秒前
何浏亮完成签到,获得积分10
5秒前
暮迟途远完成签到,获得积分10
5秒前
5秒前
晏温应助善良黑夜采纳,获得10
6秒前
完美世界应助wei采纳,获得10
6秒前
kek完成签到,获得积分10
7秒前
Y....完成签到,获得积分10
7秒前
安紊完成签到,获得积分10
7秒前
白鹤完成签到,获得积分20
7秒前
Japrin完成签到,获得积分10
8秒前
tad81完成签到,获得积分10
8秒前
小羽完成签到 ,获得积分10
10秒前
11秒前
Echo完成签到,获得积分10
13秒前
crescendo完成签到,获得积分10
14秒前
小白应助LLLLL采纳,获得20
14秒前
加油啊完成签到,获得积分10
14秒前
MA完成签到,获得积分10
15秒前
15秒前
吉驴完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
锦鲤完成签到 ,获得积分10
20秒前
2thered发布了新的文献求助10
21秒前
21秒前
22秒前
温暖的问候完成签到,获得积分10
22秒前
24秒前
MH驳回了852应助
25秒前
26秒前
123完成签到,获得积分10
27秒前
ref:rain完成签到,获得积分10
27秒前
mzhang2完成签到 ,获得积分10
27秒前
zho发布了新的文献求助10
29秒前
mzhang2发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798970
求助须知:如何正确求助?哪些是违规求助? 3344671
关于积分的说明 10321176
捐赠科研通 3061162
什么是DOI,文献DOI怎么找? 1680049
邀请新用户注册赠送积分活动 806877
科研通“疑难数据库(出版商)”最低求助积分说明 763429