已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SAFE: Unsupervised image feature extraction using self‐attention based feature extraction network

计算机科学 模式识别(心理学) 特征提取 人工智能 特征(语言学) 萃取(化学) 图像(数学) 数据挖掘 色谱法 语言学 哲学 化学
作者
Yeoung Je Choi,Gyeong Taek Lee,Chang Ouk Kim
出处
期刊:Expert Systems [Wiley]
卷期号:41 (8) 被引量:1
标识
DOI:10.1111/exsy.13583
摘要

Abstract The ability to extract high‐quality features from data is critical for machine learning applications. With the development of deep learning, various methods have been developed for image feature extraction, and unsupervised techniques have gained popularity due to their ability to operate without response variables. Autoencoders with encoder–decoder architectures are a common example of such techniques, but they are limited by a lack of proportional relationship between model reconstruction and encoder feature extraction performance. If the decoder is composed of multiple layers and mapping to a higher dimension is easier, the feature extraction performance of the encoder is likely to decrease. However, previous research has not adequately addressed this limitation. This study identifies the limitations of conventional unsupervised feature extraction techniques that utilize the encoder–decoder architecture, and proposes a novel feature extraction technique called SAFE, which utilizes a self‐attention mechanism to eliminate decoder effects and improve the performance of encoder. To validate the effectiveness of the proposed model, we conducted experiments using diverse datasets (MNIST, Fashion MNIST, SVHN, and WM811K). The results of the experiments demonstrated that our proposed method exhibited, on average, 2%–10% higher performance in terms of accuracy and F‐measure compared to the existing feature extraction techniques in the classification problem. While our research has limitations, specifically in its applicability only to the selection of image features, future studies should be undertaken to explore its potential application in various fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助进击的野草采纳,获得10
刚刚
健忘丹珍完成签到,获得积分10
2秒前
勤劳悒完成签到,获得积分10
3秒前
搜集达人应助dwgwushan采纳,获得30
15秒前
ASH完成签到,获得积分10
19秒前
22秒前
个性半山完成签到 ,获得积分10
23秒前
23秒前
25秒前
25秒前
海派Hi发布了新的文献求助10
27秒前
典雅的涟妖完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
paul完成签到,获得积分10
30秒前
馍馍发布了新的文献求助10
31秒前
xudanhong发布了新的文献求助10
31秒前
Akim应助赵晨雪采纳,获得10
34秒前
天天快乐应助科研通管家采纳,获得10
35秒前
领导范儿应助科研通管家采纳,获得10
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
在水一方应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
35秒前
嗯嗯应助科研通管家采纳,获得10
35秒前
35秒前
orixero应助精明的灵珊采纳,获得10
36秒前
37秒前
小明发布了新的文献求助10
39秒前
海派Hi完成签到,获得积分10
42秒前
火星上的摩托完成签到 ,获得积分10
42秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680781
求助须知:如何正确求助?哪些是违规求助? 5001897
关于积分的说明 15174094
捐赠科研通 4840636
什么是DOI,文献DOI怎么找? 2594249
邀请新用户注册赠送积分活动 1547310
关于科研通互助平台的介绍 1505282