已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SAFE: Unsupervised image feature extraction using self‐attention based feature extraction network

计算机科学 模式识别(心理学) 特征提取 人工智能 特征(语言学) 萃取(化学) 图像(数学) 数据挖掘 色谱法 语言学 哲学 化学
作者
Yeoung Je Choi,Gyeong Taek Lee,Chang Ouk Kim
出处
期刊:Expert Systems [Wiley]
卷期号:41 (8) 被引量:1
标识
DOI:10.1111/exsy.13583
摘要

Abstract The ability to extract high‐quality features from data is critical for machine learning applications. With the development of deep learning, various methods have been developed for image feature extraction, and unsupervised techniques have gained popularity due to their ability to operate without response variables. Autoencoders with encoder–decoder architectures are a common example of such techniques, but they are limited by a lack of proportional relationship between model reconstruction and encoder feature extraction performance. If the decoder is composed of multiple layers and mapping to a higher dimension is easier, the feature extraction performance of the encoder is likely to decrease. However, previous research has not adequately addressed this limitation. This study identifies the limitations of conventional unsupervised feature extraction techniques that utilize the encoder–decoder architecture, and proposes a novel feature extraction technique called SAFE, which utilizes a self‐attention mechanism to eliminate decoder effects and improve the performance of encoder. To validate the effectiveness of the proposed model, we conducted experiments using diverse datasets (MNIST, Fashion MNIST, SVHN, and WM811K). The results of the experiments demonstrated that our proposed method exhibited, on average, 2%–10% higher performance in terms of accuracy and F‐measure compared to the existing feature extraction techniques in the classification problem. While our research has limitations, specifically in its applicability only to the selection of image features, future studies should be undertaken to explore its potential application in various fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可爱完成签到 ,获得积分10
1秒前
专注的芷完成签到 ,获得积分10
3秒前
111完成签到,获得积分10
4秒前
4秒前
5秒前
阿永发布了新的文献求助10
10秒前
111发布了新的文献求助10
10秒前
西瓜撞地球完成签到 ,获得积分10
12秒前
12秒前
111完成签到,获得积分10
15秒前
zhengguibin完成签到 ,获得积分10
16秒前
长安完成签到 ,获得积分10
17秒前
所所应助招风鼠采纳,获得10
18秒前
19秒前
xuli21315完成签到 ,获得积分10
19秒前
大个应助KYY采纳,获得10
20秒前
21秒前
田様应助111采纳,获得10
21秒前
Yolo完成签到,获得积分10
23秒前
23秒前
小龙完成签到,获得积分10
24秒前
勤劳绿柳完成签到 ,获得积分10
24秒前
XIAOMEIMA发布了新的文献求助10
25秒前
韩雪发布了新的文献求助10
27秒前
Wilddeer完成签到 ,获得积分10
30秒前
MOREMO发布了新的文献求助10
31秒前
32秒前
32秒前
研友_VZG7GZ应助韩雪采纳,获得10
33秒前
linjia完成签到,获得积分10
34秒前
撒旦啊实打实的完成签到,获得积分10
34秒前
35秒前
35秒前
xxfsx发布了新的文献求助10
35秒前
CALCULATING发布了新的文献求助10
35秒前
端庄的飞阳完成签到 ,获得积分10
37秒前
liuyang关注了科研通微信公众号
39秒前
整齐芷文发布了新的文献求助10
42秒前
CALCULATING完成签到,获得积分10
43秒前
21完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5278763
求助须知:如何正确求助?哪些是违规求助? 4434407
关于积分的说明 13804858
捐赠科研通 4313800
什么是DOI,文献DOI怎么找? 2367690
邀请新用户注册赠送积分活动 1363027
关于科研通互助平台的介绍 1326015