Deep Learning–based Approach for Brainstem and Ventricular MR Planimetry: Application in Patients with Progressive Supranuclear Palsy

医学 进行性核上麻痹 脑干 中脑 磁共振成像 分割 连接组学 帕金森病 人工智能 核医学 计算机科学 心理学 放射科 解剖 神经科学 病理 疾病 连接体 中枢神经系统 功能连接
作者
S. Ló Nigro,Marco Filardi,Benedetta Tafuri,Martina Nicolardi,Roberto De Blasi,Alessia Giugno,Valentina Gnoni,Giammarco Milella,Daniele Urso,Stefano Zoccolella,Giancarlo Logroscino
出处
期刊:Radiology [Radiological Society of North America]
被引量:1
标识
DOI:10.1148/ryai.230151
摘要

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a fast and fully automated deep learning (DL)-based method for the MRI planimetric segmentation and measurement of the brainstem and ventricular structures most affected in patients with progressive supranuclear palsy (PSP). Materials and Methods In this retrospective study, T1-weighted MR images from healthy controls (n=84) were used to train DL models for segmenting the midbrain, pons, middle cerebellar peduncles (MCP), superior cerebellar peduncle (SCP), third ventricle (3rd V) and frontal horns (FHs). Internal, external and clinical test datasets (n=305) were used to assess segmentation model reliability. DL masks from test datasets were used to automatically extract midbrain and pons areas and the width of MCP, SCP, 3rd V and FHs. Automated measurements were compared with those manually performed by an expert radiologist. Finally, these measures were combined to calculate the midbrain-to-pons area ratio, magnetic resonance parkinsonism index (MRPI) and MRPI 2.0, which were used to differentiate patients with PSP (n=71) from those with Parkinson's disease (PD, n=129). Results Dice coefficients above 0.85 were found for all brain regions when comparing manual and DL-based segmentations. A strong correlation was observed between automated and manual measurements (Spearman's Rho>0.80, p<0.001). DL-based measurements showed excellent performance in differentiating patients with PSP from those with PD, with an area under the receiver operating characteristic curve above 0.92. Conclusion Automated approach successfully segmented and measured the brainstem and ventricular structures. DL-based models may represent a useful approach to support the diagnosis of PSP and potentially other conditions associated with brainstem and ventricular alterations. ©RSNA, 2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无处不在完成签到 ,获得积分10
1秒前
3秒前
56789完成签到,获得积分20
3秒前
朱南晴完成签到,获得积分10
5秒前
5秒前
诗筠完成签到 ,获得积分0
5秒前
6秒前
脑洞疼应助小卢采纳,获得10
6秒前
何公主完成签到,获得积分10
6秒前
rputation完成签到 ,获得积分10
10秒前
wanci应助andy采纳,获得10
11秒前
11秒前
飞鸟完成签到,获得积分10
11秒前
欣喜眼神发布了新的文献求助10
12秒前
13秒前
华仔应助LX采纳,获得30
13秒前
NexusExplorer应助ada采纳,获得10
14秒前
勤奋的小懒虫完成签到 ,获得积分10
15秒前
小马甲应助hana采纳,获得10
15秒前
16秒前
喜洋洋发布了新的文献求助10
17秒前
ding应助依亦然采纳,获得10
18秒前
简单水蓉发布了新的文献求助30
18秒前
乐观小之应助欣喜眼神采纳,获得10
18秒前
19秒前
饱满翠绿发布了新的文献求助10
20秒前
XXYY发布了新的文献求助30
20秒前
科研通AI5应助勤劳的筝采纳,获得10
20秒前
whisper完成签到,获得积分20
22秒前
22秒前
梦溪完成签到 ,获得积分10
24秒前
英姑应助Conccuc采纳,获得10
24秒前
无情的匪完成签到 ,获得积分10
25秒前
26秒前
27秒前
27秒前
领导范儿应助123采纳,获得10
27秒前
27秒前
pannyfeng完成签到,获得积分10
27秒前
喃喃发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243