Artificial Intelligence Application for Anti-tumor Drug Synergy Prediction

药品 计算机科学 人工智能 计算生物学 医学 药理学 生物
作者
Peng Zheng,Yanling Ding,Pengfei Zhang,Xiaolan Lv,Zepeng Li,Xiaoling Zhou,Shigao Huang
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:31 (40): 6572-6585 被引量:2
标识
DOI:10.2174/0109298673290777240301071513
摘要

Currently, the main therapeutic methods for cancer include surgery, radiation therapy, and chemotherapy. However, chemotherapy still plays an important role in tumor therapy. Due to the variety of pathogenic factors, the development process of tumors is complex and regulated by many factors, and the treatment of a single drug is easy to cause the human body to produce a drug-resistant phenotype to specific drugs and eventually leads to treatment failure. In the process of clinical tumor treatment, the combination of multiple drugs can produce stronger anti-tumor effects by regulating multiple mechanisms and can reduce the problem of tumor drug resistance while reducing the toxic side effects of drugs. Therefore, it is still a great challenge to construct an efficient and accurate screening method that can systematically consider the synergistic anti- tumor effects of multiple drugs. However, anti-tumor drug synergy prediction is of importance in improving cancer treatment outcomes. However, identifying effective drug combinations remains a complex and challenging task. This review provides a comprehensive overview of cancer drug synergy therapy and the application of artificial intelligence (AI) techniques in cancer drug synergy prediction. In addition, we discuss the challenges and perspectives associated with deep learning approaches. In conclusion, the review of the AI techniques' application in cancer drug synergy prediction can further advance our understanding of cancer drug synergy and provide more effective treatment plans and reasonable drug use strategies for clinical guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pluto应助悲凉的忆寒采纳,获得10
3秒前
3秒前
joleisalau发布了新的文献求助10
4秒前
7秒前
Jehuw发布了新的文献求助10
7秒前
11秒前
Owen应助joleisalau采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
谢会会完成签到 ,获得积分10
15秒前
15秒前
阿斯顿发布了新的文献求助10
17秒前
17秒前
青橘短衫发布了新的文献求助10
17秒前
19秒前
科研通AI5应助w934420513采纳,获得10
19秒前
葵花籽完成签到,获得积分10
22秒前
Jasper应助tian采纳,获得10
22秒前
王王完成签到,获得积分10
22秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366