Path‐enhanced chunking approach with residual attention for medical image segmentation

计算机科学 分割 人工智能 图像分割 条件随机场 模式识别(心理学) 残余物 特征(语言学) 计算机视觉 尺度空间分割 像素 块(置换群论) 数学 算法 哲学 语言学 几何学
作者
Shanshan Li,Zaixian Zhang,Shunli Liu,Shuang Chen,Xuefeng Liu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (6): 4159-4174
标识
DOI:10.1002/mp.17727
摘要

Abstract Background Medical image segmentation is an essential component of computer‐aided diagnosis. While U‐Net has been widely used in this field, its performance can be limited by incomplete feature information transfer and the imbalance between foreground and background pixel classes in medical images. Purpose To improve feature utilization and address challenges, such as missing target regions and insufficient edge detail preservation, this study proposes a segmentation method that integrates path enhancement, residual attention, and zone‐based chunking training. Methods The proposed method introduces a path enhancement structure consisting of a bottom‐up path aggregation branch (PAB) and a multilevel fusion and complementary enhancement branch (FEB). The PAB aims to improve the transmission of semantic and positional information, while the FEB provides a richer feature representation for mask prediction. Additionally, a residual block with directional frontier support and combinatorial attention is designed to focus on important content units and boundary features. To further refine segmentation, a chunking strategy is employed to enhance the extraction of fine‐grained foreground details through localized processing. Results The method was evaluated through extensive ablation experiments, demonstrating consistent performance across multiple trials. When applied to lung nodule segmentation in computed tomography (CT) images, the method showed a reduction in mis‐segmented regions. The experimental results suggest that the proposed approach can improve segmentation accuracy and stability compared to baseline methods. Conclusions Overall, the proposed method shows promise for medical image segmentation tasks, particularly in applications requiring precise delineation of complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助花南星采纳,获得10
刚刚
解语花发布了新的文献求助30
1秒前
lily2025完成签到,获得积分10
1秒前
科研通AI6应助纷雪采纳,获得10
1秒前
1秒前
安详的自中完成签到,获得积分10
2秒前
DWJIANG发布了新的文献求助10
2秒前
2秒前
青云天发布了新的文献求助10
2秒前
3秒前
4秒前
一个张发布了新的文献求助10
4秒前
orixero应助hujin采纳,获得10
4秒前
4秒前
二毛完成签到,获得积分20
4秒前
Manphie应助辛勤芷天采纳,获得10
5秒前
5秒前
6秒前
好好发布了新的文献求助10
6秒前
7秒前
lmgj完成签到,获得积分10
7秒前
7秒前
谢飞完成签到 ,获得积分20
8秒前
莫元枫完成签到,获得积分10
8秒前
agou完成签到,获得积分10
8秒前
8秒前
8秒前
ccc发布了新的文献求助10
8秒前
9秒前
9秒前
HeyHsc完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
uu完成签到 ,获得积分10
10秒前
naki完成签到,获得积分10
11秒前
毛毛发布了新的文献求助10
11秒前
牧友桃发布了新的文献求助10
11秒前
11秒前
韩明佐发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924