作者
Zhengmei Wang,Sihan Hou,Boyang Liao,Zhikai Yao,Yuting Zhu,Hong Liu,Jiajie Feng
摘要
Long-term human residence on the Moon is an inevitable trend in lunar exploration, necessitating the development of Bioregenerative Life Support Systems (BLSSs). In BLSSs, plant cultivation serves as the core functional unit, requiring substantial amounts of cultivation substrates. Lunar soil has potential as a cultivation substrate, but its suitability for plant growth must be improved to meet life-support requirements. As a fine-grained, organics-free, in situ resource, lunar soil's high compaction significantly restricts crops' root access to oxygen, water, and nutrients. While the addition of organic solid waste-a byproduct of BLSSs-could alleviate compaction, issues such as salinization, incomplete decomposition, and the presence of pathogens pose risks to crop health. In this study, we introduced earthworms into wheat cultivation systems to gradually digest, transfer (as vermicompost), and mix solid waste with a lunar soil simulant substrate. We set five experimental groups: a positive control group using vermiculite (named as V) as the optimal growth substrate, a negative control group using pure lunar soil simulant (LS), and three treatment groups using lunar soil simulant with solid waste and 15 (LS+15ew), 30 (LS+30ew), and 45 (LS+45ew) earthworms added. Our results demonstrated significant improvements in both compaction (e.g., bulk density, hydraulic conductivity) and salinization (e.g., salinity, electrical conductivity), likely due to the improved soil aggregate structures, which increased the porosity and ion adsorption capacity of the soil. Additionally, the microbial community within the substrate shifted toward a cooperative pattern dominated by significantly enriched plant probiotics. Consequently, the cultivated wheat achieved approximately 80% of the growth parameters (including production) compared to the control group grown in vermiculite with nutrient solution (representing ideal cultivation conditions), indicating sufficient nutrient supply from the mineralized waste. We can conclude that the earthworms "complementarily" improved the lunar soil simulant and organic waste by addressing compaction and salinization, respectively, leading to comprehensive improvements in key parameters, including the microbial environment. This study proposes a conceptual framework for improving lunar soil for crop cultivation, and it innovatively introduces earthworms as a preliminary yet effective solution. These findings provide a feasible and inspiring foundation for future lunar agriculture.