导电体
动力学(音乐)
离子键合
机械
经典力学
材料科学
物理
机械工程
工程类
复合材料
离子
声学
量子力学
作者
Xiaokang Wang,Xixian Yang,Jianguo Mei,Kejie Zhao
摘要
Abstract Organic mixed ionic-electronic conductors (OMIECs) are a class of materials that can transport ionic and electronic charge carriers simultaneously. They have shown broad applications in soft robotics, electrochemical transistors, and bio-electronics. The structural response of OMIECs to the mixed conduction populates from molecular conformation to devices, presenting challenges in understanding their mechanical behavior and constitutive descriptions. Furthermore, OMIECs feature strong multiphysics interactions among mechanics, electrostatics, charge conduction, mass transport, and microstructural evolution. In this review, we summarize recent progress in mechanistic understanding of OMIECs and highlight dynamics and heterogeneity underlying each element of mechanics. We introduce strain activation and breathing, mechanical properties, and degradation of OMIECs upon electrochemical doping and dedoping. Drawing on the state-of-the-art experimental and simulation insights, we highlight the critical role of multiscale dynamics in governing the functionality of OMIECs. We discuss the current understanding and limitation of constitutive relations and present computational frameworks that integrate multiphysics. We synthesize mechanics-driven strategies—spanning strain modulation, material stretchability, and interfacial stability—from molecular design to macroscopic structural engineering. We conclude with our perspective on the outstanding questions and key challenges for continued research. This review aims to organize the fundamental mechanical principles of OMIECs, offering a multidisciplinary framework for researchers to identify, analyze, and address mechanical challenges in mixed conducting polymers and their applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI