亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative AI and multimodal data for educational feedback: Insights from embodied math learning

具身认知 生成语法 数学教育 计算机科学 生成模型 教育技术 人工智能 心理学
作者
Giulia Cosentino,Jacqueline Anton,Kshitij Sharma,Mirko Gelsomini,Michail N. Giannakos,Dor Abrahamson
出处
期刊:British Journal of Educational Technology [Wiley]
标识
DOI:10.1111/bjet.13587
摘要

Abstract This study explores the role of generative AI (GenAI) in providing formative feedback in children's digital learning experiences, specifically in the context of mathematics education. Using multimodal data, the research compares AI‐generated feedback with feedback from human instructors, focusing on its impact on children's learning outcomes. Children engaged with a digital body‐scale number line to learn addition and subtraction of positive and negative integers through embodied interaction. The study followed a between‐group design, with one group receiving feedback from a human instructor and the other from GenAI. Eye‐tracking data and system logs were used to evaluate student's information processing behaviour and cognitive load. The results revealed that while task‐based performance did not differ significantly between conditions, the GenAI feedback condition demonstrated lower cognitive load and students show different visual information processing strategies among the two conditions. The findings provide empirical support for the potential of GenAI to complement traditional teaching by providing structured and adaptive feedback that supports efficient learning. The study underscores the importance of hybrid intelligence approaches that integrate human and AI feedback to enhance learning through synergistic feedback. This research offers valuable insights for educators, developers and researchers aiming to design hybrid AI‐human educational environments that promote effective learning outcomes. Practitioner notes What is already known about this topic? Embodied learning approaches have been shown to facilitate deeper cognitive processing by engaging students physically with learning materials, which is especially beneficial in abstract subjects like mathematics. GenAI has the potential to enhance educational experiences through personalized feedback, making it crucial for fostering student understanding and engagement. Previous research indicates that hybrid intelligence that combines AI with human instructors can contribute to improved educational outcomes. What this paper adds? This study empirically examines the effectiveness of GenAI‐generated feedback when compared to human instructor feedback in the context of a multisensory environment (MSE) for math learning. Findings from system logs and eye‐tracking analysis reveal that GenAI feedback can support learning effectively, particularly in helping students manage their cognitive load. The research uncovers that GenAI and teacher feedback lead to different information processing strategies. These findings provide actionable insights into how feedback modality influences cognitive engagement. Implications for practice and/or policy The integration of GenAI into educational settings presents an opportunity to enhance traditional teaching methods, enabling an adaptive learning environment that leverages the strengths of both AI and human feedback. Future educational practices should explore hybrid models that incorporate both AI and human feedback to create inclusive and effective learning experiences, adapting to the diverse needs of learners. Policymakers should establish guidelines and frameworks to facilitate the ethical and equitable adoption of GenAI technologies for learning. This includes addressing issues of trust, transparency and accessibility to ensure that GenAI systems are effectively supporting, rather than replacing, human instructors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
MchemG给li的求助进行了留言
10秒前
土豆发布了新的文献求助10
15秒前
li完成签到 ,获得积分10
20秒前
20秒前
绿竹完成签到,获得积分10
21秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
TXZ06发布了新的文献求助30
30秒前
小葵花完成签到,获得积分20
40秒前
星梦完成签到 ,获得积分10
40秒前
1分钟前
Omni完成签到 ,获得积分10
1分钟前
搜集达人应助淡然炳采纳,获得10
2分钟前
哒哒哒完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
诚心的信封完成签到 ,获得积分10
2分钟前
CYC完成签到 ,获得积分10
2分钟前
2分钟前
淡然炳发布了新的文献求助10
2分钟前
无辜笑容发布了新的文献求助10
2分钟前
淡然炳完成签到 ,获得积分10
3分钟前
3分钟前
学医梅西发布了新的文献求助10
3分钟前
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
无辜笑容发布了新的文献求助10
3分钟前
lysh发布了新的文献求助10
3分钟前
Anto发布了新的文献求助10
3分钟前
深情安青应助学医梅西采纳,获得10
3分钟前
小小鱼完成签到 ,获得积分10
3分钟前
Hello应助无辜笑容采纳,获得10
3分钟前
3分钟前
chichqq发布了新的文献求助10
3分钟前
明轩完成签到,获得积分10
3分钟前
巫马百招完成签到,获得积分10
4分钟前
Jasper应助chichqq采纳,获得30
4分钟前
4分钟前
Sandy应助史巴兰采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957035
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111186
捐赠科研通 3234071
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264