A novel model for identifying infections in patients with acute-on-chronic liver disease (AoCLD): A nationwide, multicenter, prospective cohort study

医学 前瞻性队列研究 慢性肝病 队列 队列研究 疾病 内科学 多中心研究 重症监护医学 肝硬化 随机对照试验
作者
Hui Zhou,Hai Li,Guohong Deng,Xianbo Wang,Xin Zheng,Jinjun Chen,Zhongji Meng,Yubao Zheng,Yanhang Gao,Zhiping Qian,Feng Liu,Xiaobo Lu,Yu Shi,Jia Shang,Yan Huang,Ruochan Chen
出处
期刊:QJM: An International Journal of Medicine [Oxford University Press]
标识
DOI:10.1093/qjmed/hcaf052
摘要

To establish an early and quick model for diagnosing infections in patients with acute-on-chronic liver disease (AoCLD). This study analyzed 3,949 patients from two multicenter prospective cohorts of the Chinese Acute-on-Chronic Liver Failure (CATCH-LIFE) study. The dataset was randomly divided into training and validation cohorts in a 7:3 ratio. In the training cohort, logistic regression and least absolute shrinkage and selection operator regression analyses were used to identify predictive risk factors for infection in patients with AoCLD, and a simple nomogram was established. Two different cutoff values were determined to stratify infection risk in AoCLD patients. The developed diagnostic model included six variables: cirrhosis, ascites, neutrophil count (N), and total bilirubin, C-reactive protein (CRP), and blood sodium levels. The area under the receiver operating characteristic curve for the training and validation cohorts were 0.818 and 0.809, respectively, significantly higher than using CRP, procalcitonin, or N alone. Additionally, in the training cohort, we set a low cutoff value of 0.2028, resulting in a sensitivity of 80.15%, specificity of 68.25%, and a negative predictive value of 92.7% for rule-out diagnosis. A high cutoff value of 0.4045 resulting in a specificity of 90.1%, sensitivity of 52.7%, and a positive predictive value of 64% for rule-in diagnosis. These cutoff values were validated in the validation cohort. We established a nomogram model to assist clinicians in diagnosing infections in patients with AoCLD, effectively improving the accuracy and timeliness of diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助1459采纳,获得10
刚刚
钊宽发布了新的文献求助10
刚刚
刚刚
lpp_发布了新的文献求助10
1秒前
keyantong完成签到,获得积分10
1秒前
种花家的狗狗完成签到,获得积分10
1秒前
1秒前
易方完成签到,获得积分10
1秒前
yiyi完成签到,获得积分20
2秒前
2秒前
Daria完成签到,获得积分10
3秒前
3秒前
3秒前
冷静水蓝发布了新的文献求助10
3秒前
Square完成签到,获得积分10
3秒前
zhq完成签到,获得积分20
4秒前
Honor完成签到 ,获得积分10
4秒前
4秒前
无花果应助麻果采纳,获得100
4秒前
鲤鱼安青完成签到 ,获得积分10
5秒前
5秒前
5秒前
sunshine应助yiyi采纳,获得10
6秒前
隔岸发布了新的文献求助10
6秒前
项初蝶发布了新的文献求助10
6秒前
iNk应助Wangjing采纳,获得10
7秒前
insane发布了新的文献求助10
7秒前
可爱的函函应助安安采纳,获得10
7秒前
花露水完成签到,获得积分10
7秒前
Jane发布了新的文献求助10
7秒前
小李老博应助WWY采纳,获得10
8秒前
gh发布了新的文献求助10
8秒前
8秒前
零吾完成签到 ,获得积分10
9秒前
烟花应助钊宽采纳,获得10
9秒前
闫闫冰峰完成签到,获得积分10
9秒前
9秒前
11秒前
等风来完成签到,获得积分10
12秒前
爆米花应助鸭梨很大采纳,获得30
12秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830824
求助须知:如何正确求助?哪些是违规求助? 3373141
关于积分的说明 10478298
捐赠科研通 3093303
什么是DOI,文献DOI怎么找? 1702447
邀请新用户注册赠送积分活动 819066
科研通“疑难数据库(出版商)”最低求助积分说明 771232