亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Label Auroral Image Classification Based on CNN and Transformer

人工智能 计算机科学 上下文图像分类 模式识别(心理学) 计算机视觉 图像处理 图像分割 图像(数学)
作者
Hang Su,Qiuju Yang,Yeyan Ning,Zejun Hu,Lili Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3550003
摘要

Auroral image classification has long been a focus of research in auroral physics. However, current methods for automatic auroral classification typically assume that only one type of aurora is present in an auroral image. This oversight neglects the complex transition states and coexistence of multiple types during the auroral evolution process, thus limiting the exploration of the intricate semantics of auroral images. To fully exploit the physical information embedded in auroral images, this paper proposes a multi-label auroral classification method, termed MLAC, which integrates convolutional neural network (CNN) and Transformer architectures. Firstly, we introduce a multi-scale feature fusion framework that enables the model to capture both fine-grained features and high-level information in auroral images, resulting in a more comprehensive representation of auroral features. Secondly, we propose a lightweight multi-head self-attention mechanism that captures long-range dependencies between pixels during the multiscale feature fusion process, which is crucial for distinguishing subtle differences between auroral types. Furthermore, we design a residual focused multilayer perceptron module that integrates large kernel depth-wise convolution with an improved multilayer perceptron. This integration enhances the model's ability to represent complex spatial structure, thus improving local feature extraction and global contextual understanding. The proposed method achieves a mean average precision (mAP) of 88.20% on the auroral observation data collected at the Yellow River Station from 2003 to 2008. This performance significantly surpasses that of the most advanced multi-label classification models while maintaining competitive computational efficiency. Moreover, our method also outperforms the state-of-the-art multi-label methods in both computational efficiency and classification accuracy on two publicly available multi-label image datasets: WIDER-Attribute and VOC2007. These results demonstrate that our method skillfully leverages the robust feature extraction capability of CNNs for local features and the superior global information processing capability of Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助图书检索员采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
我是老大应助整齐飞凤采纳,获得10
24秒前
1分钟前
整齐飞凤完成签到,获得积分10
1分钟前
小王发布了新的文献求助10
1分钟前
1分钟前
整齐飞凤发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
秋er完成签到,获得积分20
2分钟前
2分钟前
2分钟前
科研通AI2S应助yyyu采纳,获得10
2分钟前
2分钟前
秋er发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
FashionBoy应助调皮帆布鞋采纳,获得10
4分钟前
4分钟前
蟹蟹发布了新的文献求助10
4分钟前
丘比特应助蟹蟹采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
HuiHui完成签到,获得积分10
6分钟前
7分钟前
pan完成签到,获得积分10
7分钟前
英俊的铭应助pan采纳,获得10
7分钟前
punch完成签到 ,获得积分10
7分钟前
bkagyin应助科研通管家采纳,获得10
8分钟前
Dannnn完成签到 ,获得积分10
8分钟前
蔡毛线完成签到,获得积分10
8分钟前
9分钟前
cdercder应助风华正茂采纳,获得30
9分钟前
ldjldj_2004完成签到 ,获得积分10
9分钟前
平常从蓉完成签到,获得积分0
10分钟前
上官若男应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843229
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540628
捐赠科研通 3106102
什么是DOI,文献DOI怎么找? 1710848
邀请新用户注册赠送积分活动 823794
科研通“疑难数据库(出版商)”最低求助积分说明 774300