药物输送
纳米技术
药品
材料科学
多糖
医学
生物医学工程
药理学
化学
生物化学
作者
Chao Liu,Meng Liu,Xin Li,Yimei Hu,Lingling Zhang,Fengming You,Gang Fan,Yongjie Ge
摘要
Owing to its non-invasive nature, painless drug delivery, and controlled drug loading capacity, the microneedle (MN) technology has recently garnered significant attention in clinical practice. For instance, it has been pervasively employed as an innovative transdermal delivery method in skin disease therapy. However, traditional MN techniques have been associated with challenges regarding biocompatibility, biodegradability, and drug release precision, limiting their clinical efficacy and increasing the risk of side effects resulting from uneven drug distribution. To address these issues, polysaccharide materials have been proposed as viable alternatives to be used in MN technologies. In addition to their excellent biocompatibility and biodegradability, polysaccharide materials such as alginate, chitosan, and Hyaluronic Acid (HA), among other Traditional Chinese Medicine (TCM)-extracted polysaccharides (such as Bletilla and notoginseng), could also exert anti-inflammatory and antibacterial effects, promoting tissue regeneration. These attributes enable polysaccharide-based MNs to improve the local drug concentration, reduce systemic side effects, minimize patient discomfort, and lower treatment risks, making them particularly suitable for treating skin conditions such as eczema, psoriasis, and acne. This article systematically reviews the properties of various polysaccharide materials, as well as the preparation methods of polysaccharide-based MNs and their therapeutic effects as reported in animal models and clinical trials. Our findings could lay a solid theoretical foundation for developing polysaccharide-based MN technologies and fostering their widespread clinical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI