材料科学
电解质
阳极
法拉第效率
扩散
沸石咪唑盐骨架
化学工程
电化学
电极
吸附
热力学
物理化学
金属有机骨架
物理
工程类
化学
作者
Dongmei Zhang,Ruonan Yang,Jianhua Zhou,Wenping Liu,Haiqing Qin,Zhenjun Zhang,Xiaoxu Lei,Anjun Lu,Zuxue Mo,Lei Miao,Feng Dang
标识
DOI:10.1016/j.ensm.2023.102976
摘要
The zeolitic imidazolate framework (ZIF) is characterized by a highly ordered structure, large cavities, and thermal/chemical stabilities and has been widely researched for energy storage. In this study, using commercial Si powder with a diameter of 50–200 nm at a kilogram scale, Si@ZIF core-shell particles with dispersed ZIF-8 rhombic dodecahedrons were fabricated by a one-pot method and achieved excellent electrochemical performance. With the specific pore diameter and ordered network formed by membered rings, experimental results demonstrated that the ZIF-8 shell realized a uniform and accelerated Li+ diffusion route, alleviated volumetric expansion of the Si core, and constructed a LiF-concentrated robust solid electrolyte interface film with less unnecessary consumption of electrolyte and Li+. Density functional theory calculations verified the higher adsorption energy for Li-solvated clusters and the de-solvation effect on the surface of ZIF-8, which can increase Li+ concentration along the one-dimensional channels of 4-membered ring with a diameter similar to that of Li+ for high-speed and uniform Li+ intercalation. Furthermore, the large and elastic rhombic dodecahedrons formed by pure ZIF-8 buffered the volume change and maintained the integrity of the Si electrode during cycling. As a result, the Si@8Z anode achieved a reversible capacity of 818.5 mAh g−1 after 650 cycles at 1 A g−1 with a high initial coulombic efficiency of 88.2 % and outstanding rater performance even at 8 A g−1. Nevertheless, the capacity of the Si anode decreased to 0 mAh g−1 after 200 cycles. The present work clarifies the effect of ZIF on the performance of Si anodes and provides a simple method to modify commercial Si powder.
科研通智能强力驱动
Strongly Powered by AbleSci AI