Differentiating Gastrointestinal Stromal Tumors From Leiomyomas of Upper Digestive Tract Using Convolutional Neural Network Model by Endoscopic Ultrasonography

医学 主旨 平滑肌瘤 内镜超声检查 卷积神经网络 放射科 间质细胞 胃肠道 病理 内窥镜检查 人工智能 内科学 计算机科学
作者
Jing Liu,Jia Huang,Yan Song,Qi He,Weili Fang,Tao Wang,Zhongqing Zheng,Wentian Liu
出处
期刊:Journal of Clinical Gastroenterology [Lippincott Williams & Wilkins]
卷期号:58 (6): 574-579 被引量:3
标识
DOI:10.1097/mcg.0000000000001907
摘要

Background: Gastrointestinal stromal tumors (GISTs) and leiomyomas are the most common submucosal tumors of the upper digestive tract, and the diagnosis of the tumors is essential for their treatment and prognosis. However, the ability of endoscopic ultrasonography (EUS) which could correctly identify the tumor types is limited and closely related to the knowledge, operational level, and experience of the endoscopists. Therefore, the convolutional neural network (CNN) is used to assist endoscopists in determining GISTs or leiomyomas with EUS. Materials and Methods: A model based on CNN was constructed according to GoogLeNet architecture to distinguish GISTs or leiomyomas. All EUS images collected from this study were randomly sampled and divided into training set (n=411) and testing set (n=103) in a ratio of 4:1. The CNN model was trained by EUS images from the training set, and the testing set was utilized to evaluate the performance of the CNN model. In addition, there were some comparisons between endoscopists and CNN models. Results: It was shown that the sensitivity and specificity in identifying leiomyoma were 95.92%, 94.44%, sensitivity and specificity in identifying GIST were 94.44%, 95.92%, and accuracy in total was 95.15% of the CNN model. It indicates that the diagnostic accuracy of the CNN model is equivalent to skilled endoscopists, or even higher than them. Conclusion: While identifying GIST or leiomyoma, the performance of CNN model was robust, which is highlighting its promising role in supporting less-experienced endoscopists and reducing interobserver agreement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙琪玛玛完成签到 ,获得积分10
2秒前
火柴发布了新的文献求助10
2秒前
hy完成签到,获得积分10
2秒前
852应助wjt采纳,获得10
3秒前
柚子发布了新的文献求助10
3秒前
芳香烃关注了科研通微信公众号
3秒前
彭于晏应助黑色幽默采纳,获得10
3秒前
梁三柏发布了新的文献求助10
3秒前
笃于时完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
MENG发布了新的文献求助10
5秒前
lessormoto发布了新的文献求助10
6秒前
秋风飒完成签到,获得积分10
6秒前
7秒前
hdwxn13完成签到,获得积分20
8秒前
我是弱智先帮我完成签到,获得积分10
8秒前
8秒前
苏苏发布了新的文献求助10
9秒前
朴素幼晴发布了新的文献求助10
9秒前
兮兮发布了新的文献求助10
10秒前
10秒前
11秒前
包容若风发布了新的文献求助10
11秒前
杨洋发布了新的文献求助10
12秒前
华仔应助王莉采纳,获得30
12秒前
12秒前
13秒前
13秒前
科研通AI5应助MENG采纳,获得10
13秒前
洁净雅容完成签到,获得积分10
15秒前
852应助你好这位仁兄采纳,获得10
15秒前
替我活着发布了新的文献求助10
15秒前
年轻尔丝关注了科研通微信公众号
15秒前
科研通AI5应助安好采纳,获得10
16秒前
SYLH应助乐观的中心采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831