A state detection method of offshore wind turbines’ gearbox bearing based on the transformer and GRU

涡轮机 海上风力发电 风力发电 SCADA系统 异常检测 计算机科学 变压器 状态监测 方位(导航) 汽轮机 断层(地质) 可靠性工程 工程类 数据挖掘 人工智能 地质学 机械工程 电气工程 地震学 电压
作者
Zihan Zhao,Qiang Wang,Shao Changsheng,Ning Chen,Xinyao Liu,Guangbin Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025903-025903 被引量:13
标识
DOI:10.1088/1361-6501/ad0956
摘要

Abstract Through the analysis of data from the SCADA system of a wind turbine unit in a specific offshore wind farm located in Zhanjiang, it was observed that the most prevalent type of fault is bearing alarms on the gearbox’s generator side. Considering the growing need for intelligent offshore wind turbine maintenance, this study employed GRA on SCADA data collected over a significant duration from a representative wind turbine unit. Relevant features were extracted, with temperature serving as the target parameter. To address the challenge of long-term dependencies in long-term time series forecasting tasks, this study uniquely combined the GRU with the advanced Transformer neural network which incorporates attention mechanisms, to predict the temperature trend of the gearbox’s generator-side bearing. Based on the prediction residuals obtained during normal operation and their subsequent analysis, the study devised an effective anomaly detection process to identify early abnormal states of the gearbox’s generator-side bearing. Comparative performance evaluations were conducted, comparing the combined model with its individual component models, as well as the traditional LightGBM, in terms of temperature time series prediction and their application in anomaly detection. The results unequivocally demonstrate that the combined model outperforms both the individual models and LightGBM in terms of time series prediction accuracy and anomaly detection effectiveness, indicating an enhanced ability to handle long-term memory challenges. Furthermore, the combined model exhibits great potential of practical application for the early warning of gearbox bearing anomalies during actual wind turbine daily operation and maintenance, providing a valuable solution for the offshore wind turbine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zz完成签到,获得积分10
1秒前
深情安青应助嘉嘉sone采纳,获得10
1秒前
科研通AI6应助llh采纳,获得10
2秒前
2秒前
真妮完成签到,获得积分10
3秒前
4秒前
文艺的自中完成签到,获得积分10
5秒前
李健的粉丝团团长应助JH采纳,获得10
7秒前
安晓慧完成签到,获得积分10
7秒前
xia123发布了新的文献求助10
7秒前
bjy完成签到,获得积分10
8秒前
Bsisoy发布了新的文献求助10
8秒前
在水一方应助zzy采纳,获得10
8秒前
Jared应助郑江璇采纳,获得10
9秒前
科研通AI2S应助Echopotter采纳,获得10
11秒前
11秒前
科研通AI6应助周杰采纳,获得10
11秒前
12秒前
ye关注了科研通微信公众号
12秒前
13秒前
无奈亦瑶完成签到 ,获得积分10
14秒前
嘉嘉sone发布了新的文献求助10
15秒前
xia123完成签到,获得积分20
15秒前
善良香岚完成签到 ,获得积分10
16秒前
仔仔仔平发布了新的文献求助10
16秒前
17秒前
ali777完成签到,获得积分10
17秒前
研友_VZG7GZ应助tangnan采纳,获得10
18秒前
20秒前
20秒前
郑江璇应助文件撤销了驳回
21秒前
21秒前
21秒前
无敌幸运星应助shbkmy采纳,获得50
22秒前
23秒前
Archer发布了新的文献求助10
24秒前
高高完成签到,获得积分10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557336
求助须知:如何正确求助?哪些是违规求助? 4642459
关于积分的说明 14668093
捐赠科研通 4583858
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459404