Multi-Objective Optimization Task Scheduling Method Based on Dynamic Programming for Multi-Cloud Environment

计算机科学 云计算 分布式计算 调度(生产过程) 数学优化 操作系统 数学
作者
Xueyang Chen
标识
DOI:10.1109/ispds58840.2023.10235565
摘要

Cloud computing is one of the most successfull technologies for providing services on request via the Internet, bringing extreme convenience to customers and businesses with its advantages of hyperscale, modernisation, reliability, universality, high scaleability and payment on request. However, with the growth of services for managing content distribution and interactive computing, such as social networking and scientific processes online, the capacity of cloud data centers is limited and cannot meet the business needs during peak hours. To handle this huge data volume, multiple cloud systems that has been introduced to pool multiple clouds together to provide a single set of services in a collaborative manner. Aiming at the resource allocation problem in cloudy environments, this paper proposes a method of multi-objective task optimization scheduling based on dynamic programming, constructs a scheduling model of time and cost, and designs an efficient multiobjective optimisation approach is used to address the module. The method first describes the resource allocation process in a multi-cloud environment, then establishes a progress model for multi-user tasks in a cloud environment, then formalises the multi-user task optimisation problem and designs a solution algorithm based on a dynamic programming approach, and finally conducts simulation experiments to evaluate the effectiveness of the method. The experimental results show that the method can achieve time and cost optimisation in the scheduling of multi-user tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒觉大王完成签到,获得积分10
1秒前
爆米花应助无限鲜花采纳,获得10
1秒前
lixiang发布了新的文献求助10
2秒前
加一完成签到,获得积分10
5秒前
5秒前
7秒前
李健应助火星上觅露采纳,获得10
7秒前
Lee完成签到,获得积分10
7秒前
青柠完成签到 ,获得积分10
9秒前
无限鲜花完成签到,获得积分20
9秒前
Jro发布了新的文献求助10
10秒前
吴未发布了新的文献求助10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
12秒前
12秒前
14秒前
茹茹发布了新的文献求助10
14秒前
14秒前
14秒前
小黄完成签到 ,获得积分10
14秒前
科研通AI5应助摸鱼真君采纳,获得10
14秒前
bk201发布了新的文献求助10
17秒前
宋呵呵发布了新的文献求助10
18秒前
bk201完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
26秒前
26秒前
27秒前
27秒前
27秒前
27秒前
28秒前
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831597
求助须知:如何正确求助?哪些是违规求助? 3373747
关于积分的说明 10481372
捐赠科研通 3093719
什么是DOI,文献DOI怎么找? 1702969
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771319