AI-generated R.E.N.A.L.+ Score Surpasses Human-generated Score in Predicting Renal Oncologic Outcomes

医学 逻辑回归 弗雷明翰风险评分 阶段(地层学) 内科学 人工智能 古生物学 生物 疾病 计算机科学
作者
Nour Abdallah,Andrew Wood,Tarik Benidir,Nicholas Heller,Fabian Isensee,Resha Tejpaul,Dillon Corrigan,Chalairat Suk-Ouichai,G. Struyk,Keenan Moore,Nitin Venkatesh,Onuralp Ergun,Alex You,Rebecca A. Campbell,Erick M. Remer,Samuel Haywood,Venkatesh Kirshnamurthi,Robert Abouassaly,Steven C. Campbell,Nikolaos Papanikolopoulos,Christopher J. Weight
出处
期刊:Urology [Elsevier]
卷期号:180: 160-167
标识
DOI:10.1016/j.urology.2023.07.017
摘要

Objectives To determine whether we can surpass the traditional R.E.N.A.L. nephrometry score (H-score) prediction ability of pathologic outcomes by creating artificial intelligence(AI)-generated R.E.N.A.L.+ score(AI+score) with continuous rather than ordinal components. We also assessed the AI+ score components’ relative importance with respect to outcome odds. Methods This is a retrospective study of 300 consecutive patients with preoperative CT scans showing suspected renal cancer at a single institution from 2010-2018. H-score was tabulated by three trained medical personnel. Deep neural network approach automatically generated kidney segmentation masks of parenchyma and tumor. Geometric algorithms were used to automatically estimate score components as ordinal and continuous variables. Multivariate logistic regression of continuous R.E.N.A.L. components was used to generate AI+score. Predictive utility was compared between AI+, AI, and H-scores for variables of interest, and AI+score components’ relative importance was assessed. Results Median age was 60 years(IQR 51-68), and 40% were female. Median tumor size was 4.2 cm(2.6-6.12), and 92% were malignant, including 27%, 37%, and 23% with high-stage, high-grade, and necrosis, respectively. AI+score demonstrated superior predictive ability over AI and H-scores for predicting malignant(AUC 0.69 vs.0.67 vs.0.64, respectively), high-stage(AUC 0.82 vs.0.65 vs.0.71, respectively), high-grade(AUC 0.78 vs.0.65 vs.0.65, respectively), pathologic tumor necrosis(AUC 0.81 vs.0.72 vs.0.74, respectively), and partial nephrectomy approach(AUC 0.88 vs.0.74 vs.0.79, respectively). Of AI+score components, the maximal tumor diameter (“R”) was the most important outcomes predictor. Conclusions AI+ score was superior to AI-score and H-score in predicting oncologic outcomes. Time-efficient AI+score can be used at the point of care, surpassing validated clinical scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助Jessie采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
研友_VZG7GZ应助典雅的俊驰采纳,获得10
刚刚
咯噔完成签到,获得积分10
刚刚
彭于晏应助皮皮采纳,获得10
刚刚
刚刚
013完成签到,获得积分10
1秒前
1秒前
1秒前
小黑球发布了新的文献求助30
1秒前
1秒前
煜琪发布了新的文献求助10
1秒前
2秒前
2秒前
111发布了新的文献求助10
2秒前
avalanche应助Charles_Rowan采纳,获得30
2秒前
Su发布了新的文献求助10
3秒前
3秒前
自觉草莓发布了新的文献求助10
3秒前
Roy完成签到,获得积分10
3秒前
arizaki7完成签到,获得积分10
3秒前
HH完成签到,获得积分10
3秒前
3秒前
今后应助jm采纳,获得10
4秒前
Fashioner8351完成签到,获得积分10
4秒前
4秒前
4秒前
hh完成签到 ,获得积分10
5秒前
彭佳乐发布了新的文献求助10
5秒前
Owen应助尊敬的盼山采纳,获得10
5秒前
5秒前
nuoyefenfei完成签到,获得积分10
5秒前
5秒前
5秒前
yi发布了新的文献求助10
5秒前
小武发布了新的文献求助10
5秒前
ZjieY完成签到,获得积分10
6秒前
HH发布了新的文献求助10
6秒前
dd发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803