Transformer-Based Image Inpainting Detection via Label Decoupling and Constrained Adversarial Training

修补 计算机科学 人工智能 像素 计算机视觉 对抗制 变压器 模式识别(心理学) 深度学习 图像(数学) 卷积神经网络 量子力学 物理 电压
作者
Yuanman Li,Liangpei Hu,Li Dong,Haiwei Wu,Jinyu Tian,Jiantao Zhou,Xia Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1857-1872 被引量:6
标识
DOI:10.1109/tcsvt.2023.3299278
摘要

Image inpainting based on generative adversarial networks (GANs) has achieved great success in producing visually plausible images and plays an important role in many real tasks. However, the techniques of image inpainting might also be maliciously used, e.g., altering or removing interesting objects to report fake news. Despite the promising performance of recently developed inpainting detection algorithms, they are built on convolutional neural networks (CNNs) with limited receptive fields. Consequently, they fail to fully capture the disparity between the inpainted regions and untouched regions and thus are ineffective in obtaining fine-grained detection results. In this work, we develop a new image inpainting detection approach. First, we propose a locally enhanced transformer architecture tailored for image inpainting detection. Unlike previous CNN-based methods, our approach leverages both the short-range and long-range dependencies of pixels, enabling the learning of diverse statistical behaviors of inpainted and untouched regions. Second, to mitigate the distraction caused by near-edge pixels with a mixed nature during training, we propose decoupling the label into a body map and a soft-edge map, and then a cross-modality attention module is designed to propagate their information interactively. It demonstrates that our decoupling strategy outperforms the conventional edge supervision in enhancing detection accuracy. Finally, we devise a constrained adversarial training methodology in consideration of the confrontational generation procedure of deep image inpainting methods. It shows that our constrained adversarial training further enhances the detection performance by adaptively introducing interference noise in the inpainted regions. Extensive experiments validate the superiority of our scheme compared to existing CNN-based methods, showcasing its desirable detection generalizability for both deep inpainting and traditional inpainting algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得30
刚刚
刚刚
yangy115完成签到,获得积分0
3秒前
5秒前
科研通AI5应助lizhiqian2024采纳,获得10
9秒前
刘成奥发布了新的文献求助10
10秒前
感性的俊驰完成签到 ,获得积分10
12秒前
13秒前
14秒前
Skywalker完成签到,获得积分10
14秒前
15秒前
青山完成签到,获得积分10
17秒前
zhouzhou发布了新的文献求助10
19秒前
20秒前
小丘发布了新的文献求助10
21秒前
充电宝应助SpONGeBOb采纳,获得10
26秒前
可口可乐发布了新的文献求助10
27秒前
Conner完成签到 ,获得积分10
27秒前
慕青应助celine采纳,获得10
27秒前
斯文的天奇完成签到 ,获得积分10
27秒前
锦七完成签到,获得积分10
31秒前
专一的无颜完成签到,获得积分10
31秒前
科研通AI5应助lizhiqian2024采纳,获得10
32秒前
CMD完成签到 ,获得积分10
33秒前
Smoiy完成签到 ,获得积分10
33秒前
小垃圾10号完成签到,获得积分10
33秒前
元神完成签到 ,获得积分10
35秒前
Ampace小老弟完成签到 ,获得积分10
37秒前
开霁完成签到 ,获得积分10
38秒前
三物完成签到 ,获得积分10
38秒前
SciGPT应助可口可乐采纳,获得10
39秒前
40秒前
Dxy-TOFA完成签到,获得积分10
40秒前
脑洞疼应助二十世纪少年采纳,获得10
40秒前
41秒前
bull9518发布了新的文献求助10
44秒前
happiness完成签到 ,获得积分10
45秒前
SpONGeBOb完成签到,获得积分10
46秒前
lizhiqian2024发布了新的文献求助10
47秒前
47秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726