Intelligent Defect Diagnosis of Appearance Quality for Prefabricated Concrete Components Based on Target Detection and Multimodal Fusion Decision

质量(理念) 计算机科学 人工智能 质量管理 工程类 可靠性工程 运营管理 管理制度 认识论 哲学
作者
Yangze Liang,Guangyao Chen,Sihao Li,Zhao Xu
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:37 (6) 被引量:4
标识
DOI:10.1061/jccee5.cpeng-5460
摘要

The quality of prefabricated concrete (PC) components during the construction phase is crucial for project safety. However, manual inspections are no longer sufficient to meet the demands of efficient and large-scale quality inspections of PC components. While computer vision (CV) can quickly inspect the surface quality of PC components, it fails to effectively prioritize critical quality defects among different components. Treating all quality defects equally would result in resource wastage. To address the efficient detection of external quality in PC components during the construction phase, this study proposes an appearance quality diagnosis method based on object detection and multimodal fusion decision. By integrating human and machine intelligence in quality inspections and implementing multimodal fusion decision-making, the intelligent quality diagnosis method becomes more targeted. By utilizing image object detection, the accuracy of identifying quality defects reached 87.70%. The fusion decision approach combining human and machine intelligence is applied to make informed decisions regarding structures with quality defects. Through the utilization of point cloud data, high-precision quality inspections of problematic components with an accuracy of 0.1 mm have been achieved. The developed case library enables defect tracking and provides recommendations for optimization solutions. The results demonstrate that the proposed engineering quality diagnostic method can effectively and quickly identify quality defects in PC components and provide improvement suggestions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
orixero应助现代子默采纳,获得10
2秒前
想疯完成签到,获得积分20
2秒前
思源应助FORREST1993采纳,获得10
4秒前
hou1995完成签到 ,获得积分10
4秒前
5秒前
zimu012完成签到,获得积分10
5秒前
小赖不赖完成签到 ,获得积分10
5秒前
QI完成签到,获得积分10
6秒前
Xiaoguo发布了新的文献求助10
7秒前
笑羽完成签到,获得积分0
8秒前
hello11完成签到,获得积分10
8秒前
氿369完成签到 ,获得积分10
9秒前
9秒前
无花果应助dd采纳,获得10
11秒前
图苏发布了新的文献求助100
11秒前
14秒前
芋芋发布了新的文献求助10
14秒前
Li完成签到,获得积分10
18秒前
bkagyin应助nanana采纳,获得10
19秒前
niu发布了新的文献求助10
21秒前
25关注了科研通微信公众号
22秒前
23秒前
李爱国应助福宝采纳,获得10
23秒前
24秒前
善学以致用应助小无采纳,获得10
27秒前
NexusExplorer应助Xiaoguo采纳,获得10
27秒前
li发布了新的文献求助10
29秒前
29秒前
dd发布了新的文献求助10
29秒前
共享精神应助旺仔牛奶糖采纳,获得10
30秒前
xiha西希完成签到,获得积分10
30秒前
Y柒完成签到,获得积分10
31秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
上官若男应助科研通管家采纳,获得10
32秒前
Orange应助科研通管家采纳,获得10
32秒前
嘎发完成签到,获得积分10
33秒前
nozero应助楼如凡采纳,获得200
36秒前
36秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979