已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Multi-Exposure Image Fusion for Dynamic Scenes

计算机科学 人工智能 重影 计算机视觉 图像融合 水准点(测量) 光学(聚焦) 图像(数学) 融合 编码(集合论) 深度学习 语言学 哲学 物理 大地测量学 集合(抽象数据类型) 光学 程序设计语言 地理
作者
Xiao Tan,Huaian Chen,Rui Zhang,Qihan Wang,Yan Kan,Jinjin Zheng,Yi Jin,Enhong Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 5310-5325 被引量:6
标识
DOI:10.1109/tip.2023.3315123
摘要

Recently, learning-based multi-exposure fusion (MEF) methods have made significant improvements. However, these methods mainly focus on static scenes and are prone to generate ghosting artifacts when tackling a more common scenario, i.e., the input images include motion, due to the lack of a benchmark dataset and solution for dynamic scenes. In this paper, we fill this gap by creating an MEF dataset of dynamic scenes, which contains multi-exposure image sequences and their corresponding high-quality reference images. To construct such a dataset, we propose a 'static-for-dynamic' strategy to obtain multi-exposure sequences with motions and their corresponding reference images. To the best of our knowledge, this is the first MEF dataset of dynamic scenes. Correspondingly, we propose a deep dynamic MEF (DDMEF) framework to reconstruct a ghost-free high-quality image from only two differently exposed images of a dynamic scene. DDMEF is achieved through two steps: pre-enhancement-based alignment and privilege-information-guided fusion. The former pre-enhances the input images before alignment, which helps to address the misalignments caused by the significant exposure difference. The latter introduces a privilege distillation scheme with an information attention transfer loss, which effectively improves the deghosting ability of the fusion network. Extensive qualitative and quantitative experimental results show that the proposed method outperforms state-of-the-art dynamic MEF methods. The source code and dataset are released at https://github.com/Tx000/Deep_dynamicMEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想开学吧完成签到 ,获得积分10
1秒前
完美世界应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
7秒前
情怀应助hzx采纳,获得20
8秒前
李健应助优雅的盼夏采纳,获得20
8秒前
11秒前
11秒前
Roxy发布了新的文献求助10
12秒前
frap完成签到,获得积分0
13秒前
孙笑川258完成签到,获得积分10
16秒前
大模型应助Roxy采纳,获得10
17秒前
我爱科研完成签到 ,获得积分10
19秒前
桥豆麻袋应助疯狂的宛儿采纳,获得10
21秒前
小铭完成签到,获得积分10
24秒前
万能图书馆应助今日店休采纳,获得10
24秒前
深情安青应助lily88采纳,获得10
24秒前
24秒前
跳跃的洋葱完成签到 ,获得积分10
25秒前
29秒前
Hh发布了新的文献求助10
29秒前
我是老大应助哇达西采纳,获得10
33秒前
36秒前
1212_11完成签到,获得积分10
40秒前
石一完成签到 ,获得积分10
41秒前
41秒前
今日店休发布了新的文献求助10
41秒前
爆米花应助尊敬爆米花采纳,获得10
42秒前
43秒前
44秒前
卡卡咧咧发布了新的文献求助10
47秒前
1212_11发布了新的文献求助10
48秒前
囿于昼夜发布了新的文献求助10
48秒前
50秒前
充电宝应助Sesenta1采纳,获得10
51秒前
盯盯盯完成签到 ,获得积分10
51秒前
囿于昼夜完成签到,获得积分10
54秒前
57秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343765
关于积分的说明 10317521
捐赠科研通 3060512
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806711
科研通“疑难数据库(出版商)”最低求助积分说明 763295