电解质
化学工程
材料科学
阴极
水溶液
锌
离子
接口(物质)
冶金
化学
电极
有机化学
物理化学
工程类
吉布斯等温线
作者
Haobo Dong,Ruirui Liu,Xueying Hu,Fangjia Zhao,Liqun Kang,Longxiang Liu,Jianwei Li,Yeshu Tan,Yongquan Zhou,Dan J. L. Brett,Guanjie He,Ivan P. Parkin
标识
DOI:10.1002/advs.202205084
摘要
Abstract A stable cathode–electrolyte interface (CEI) is crucial for aqueous zinc‐ion batteries (AZIBs), but it is less investigated. Commercial binder poly(vinylidene fluoride) (PVDF) is widely used without scrutinizing its suitability and cathode‐electrolyte interface (CEI) in AZIBs. A water‐soluble binder is developed that facilitated the in situ formation of a CEI protecting layer tuning the interfacial morphology. By combining a polysaccharide sodium alginate (SA) with a hydrophobic polytetrafluoroethylene (PTFE), the surface morphology, and charge storage kinetics can be confined from diffusion‐dominated to capacitance‐controlled processes. The underpinning mechanism investigates experimentally in both kinetic and thermodynamic perspectives demonstrate that the COO − from SA acts as an anionic polyelectrolyte facilitating the adsorption of Zn 2+ ; meanwhile fluoride atoms on PTFE backbone provide hydrophobicity to break desolvation penalty. The hybrid binder is beneficial in providing a higher areal flux of Zn 2+ at the CEI, where the Zn‐Birnessite MnO 2 battery with the hybrid binder exhibits an average specific capacity 45.6% higher than that with conventional PVDF binders; moreover, a reduced interface activation energy attained fosters a superior rate capability and a capacity retention of 99.1% in 1000 cycles. The hybrid binder also reduces the cost compared to the PVDF/NMP, which is a universal strategy to modify interface morphology.
科研通智能强力驱动
Strongly Powered by AbleSci AI