Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:78
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
给好评发布了新的文献求助10
刚刚
Certainty橙子完成签到 ,获得积分10
刚刚
1秒前
1秒前
996发布了新的文献求助10
1秒前
1秒前
andrewyu完成签到,获得积分10
1秒前
ll完成签到,获得积分10
1秒前
2秒前
2秒前
失眠栾完成签到 ,获得积分10
3秒前
czz完成签到,获得积分20
3秒前
司书存发布了新的文献求助10
4秒前
FOOL完成签到,获得积分10
4秒前
香蕉觅云应助fra采纳,获得10
6秒前
6秒前
6秒前
玊尔发布了新的文献求助10
7秒前
静好发布了新的文献求助10
7秒前
嘟噜发布了新的文献求助10
7秒前
丘比特应助XYZ采纳,获得10
8秒前
xiaolei001完成签到,获得积分0
8秒前
lvyuan完成签到,获得积分20
8秒前
旅人完成签到,获得积分20
8秒前
8秒前
hu完成签到,获得积分10
8秒前
9秒前
10秒前
研友_VZG7GZ应助研友_Z1evNZ采纳,获得10
10秒前
11秒前
11秒前
CodeCraft应助Pooh采纳,获得10
11秒前
11秒前
11秒前
学术牛马发布了新的文献求助10
12秒前
weixiaosi完成签到 ,获得积分10
12秒前
肥波发布了新的文献求助10
13秒前
肥波发布了新的文献求助10
13秒前
14秒前
宇文青寒发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343263
求助须知:如何正确求助?哪些是违规求助? 4478823
关于积分的说明 13941007
捐赠科研通 4375831
什么是DOI,文献DOI怎么找? 2404291
邀请新用户注册赠送积分活动 1396816
关于科研通互助平台的介绍 1369175