Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects

变压器 管道(软件) 管道运输 卷积神经网络 计算机科学 排水 特征提取 人工神经网络 模式识别(心理学) 人工智能 计算机视觉 实时计算 工程类 电气工程 电压 环境工程 生物 生态学 程序设计语言
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Hongfang Lü,John C. Matthews,Chao Zhang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (15): 2109-2127 被引量:50
标识
DOI:10.1111/mice.12970
摘要

Abstract Regular detection of defects in drainage pipelines is crucial. However, some problems associated with pipeline defect detection, such as data scarcity and defect counting difficulty, need to be addressed. Therefore, a Transformer‐optimized generation, detection, and counting method for drainage‐pipeline defects was established in this paper. First, a generation network called Trans‐GAN‐Cla was developed for data augmentation. A classification network was trained to improve the quality of the generated images. Second, a detection and tracking model called Trans‐Det‐Tra was developed to track and count the number of defects. Third, the feature extraction capability of the proposed method was improved by leveraging Transformers. Compared with some well‐known convolutional neural network‐based methods, the proposed network achieved the best classification and detection accuracies of 87.2% and 87.57%, respectively. Furthermore, the F 1 scores were 87.7% and 91.9%. Finally, two pieces of onsite videos were detected and tracked, and the numbers of misalignments and obstacles were accurately counted. The results indicate that the established Transformer‐optimized method can generate high‐quality images and realize the high‐accuracy detection and counting of drainage pipeline defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
二冲完成签到,获得积分10
1秒前
顾矜应助阳光怀亦采纳,获得50
2秒前
斯文钢笔完成签到 ,获得积分10
2秒前
2秒前
sky发布了新的文献求助10
3秒前
3秒前
星辰大海应助nihao采纳,获得10
4秒前
5秒前
SYLH应助研友_ndDY5n采纳,获得10
5秒前
6秒前
卓卓发布了新的文献求助10
8秒前
你怎么这么可爱啊完成签到,获得积分10
9秒前
444发布了新的文献求助10
10秒前
CodeCraft应助XL采纳,获得30
10秒前
11秒前
11秒前
痞老板完成签到,获得积分10
11秒前
笑点低凡桃完成签到,获得积分10
13秒前
希望天下0贩的0应助奮斗采纳,获得10
13秒前
dagongren完成签到,获得积分10
13秒前
14秒前
会翻滚的水晶帝王皮皮虾完成签到,获得积分10
14秒前
岁峰柒完成签到 ,获得积分10
14秒前
yyds完成签到,获得积分10
16秒前
是真的宇航员啊完成签到,获得积分10
17秒前
17秒前
大大大长腿完成签到,获得积分10
18秒前
英俊的铭应助hunter采纳,获得10
19秒前
顾矜应助Jyy77采纳,获得10
19秒前
清枫发布了新的文献求助10
19秒前
19秒前
20秒前
今天你读文献了吗完成签到,获得积分10
22秒前
22秒前
racill发布了新的文献求助10
23秒前
24秒前
24秒前
lijiaxin完成签到,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150