Descriptor-First Approach for ADMET Prediction in the PolarisHub Antiviral Challenge

作者
Vladimir Chupakhin,John DiBella
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:66 (1): 406-412
标识
DOI:10.1021/acs.jcim.5c02094
摘要

The prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties remains a central bottleneck in small-molecule discovery. We present the third-place solution from the PolarisHub Antiviral Competition, covering five end points broadly relevant to small-molecule design: human and mouse liver microsomal stability (HLM, MLM), MDR1-MDCKII permeability, kinetic solubility, and lipophilicity (LogD). Rather than pursuing complex machine learning architectures, we adopted a descriptor-first strategy. We systematically curated descriptors and models from ADMET Predictor as meta-features and then applied high-capacity tabular learners. A pretrained foundation model for tabular data (TabPFN), used in single-task regression, consistently outperformed or matched a strong gradient boosting baseline (CatBoost), yielding up to 44% mean absolute error (MAE) reduction across end points while simplifying deployment by eliminating an extensive hyperparameter search and producing compact models. Additionally, we engineered two feature sets that delivered modest gains in randomized cross-validation runs: (i) tuned fragment representations and (ii) site-of-metabolism pattern features. Overall, we used four groups of features: mechanistic, physicochemical, fragment, and metabolic. These results indicate that in practical ADMET modeling scenarios, where rich, validated descriptors are available, the competitive advantages often arise from principled feature engineering combined with robust, rather than overly complex, modeling approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮大树发布了新的文献求助10
1秒前
红豆子完成签到,获得积分10
1秒前
无极微光应助ananan采纳,获得20
2秒前
独特的秋发布了新的文献求助10
2秒前
沉静樱桃完成签到,获得积分10
3秒前
3秒前
肥肥菲发布了新的文献求助10
3秒前
烟花应助roy采纳,获得10
4秒前
知常完成签到,获得积分10
4秒前
小陈同学应助倒头就睡采纳,获得10
5秒前
MWY完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
快乐的贵完成签到,获得积分20
7秒前
爆米花应助《子非鱼》采纳,获得10
7秒前
情怀应助浮浮世世采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
Return应助科研通管家采纳,获得10
9秒前
Axs发布了新的文献求助30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
wei发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167