材料科学
光催化
Boosting(机器学习)
电子转移
还原(数学)
电子
纳米技术
工程物理
光电子学
光化学
催化作用
机器学习
核物理学
有机化学
物理
化学
工程类
几何学
计算机科学
数学
作者
Chen Zhao,Awu Zhou,Hanbing Li,Jiamei Yu,Na Xing,Jianyu Zhang,Dayu Chen,Jian‐Rong Li
标识
DOI:10.1002/adfm.202519072
摘要
Abstract Spontaneous free‐electron transfer significantly affects the photocatalytic performance of carbon dioxide (CO 2 ) reduction. However, the precise regulation of photogenerated electron transfer direction remains a nontrivial endeavor. Herein, a heteroatomic metal‐dependent strategy is proposed to direct photogenerated electron transfer to specific catalytic active sites, thus enhancing CO 2 photoreduction over Cu‐TiO 2 @ZnIn 2 S 4 (Cu‐TiO 2 @ZIS). The core‐shell Cu‐TiO 2 @ZIS heterojunction with high activity is fabricated by in situ growth. Impressively, the optimized Cu‐TiO 2 @ZIS photocatalyst exhibits a remarkable visible light driven CO 2 ‐to‐carbon monoxide (CO) production rate of 620 µmol g −1 h −1 with selectivity (99.4%), representing a 77.5‐fold and 6.3‐fold enhancement over pristine TiO 2 (8 µmol g −1 h −1 ) and ZIS (99 µmol g −1 h −1 ), respectively. In situ characterization and theoretical calculations reveal that the combination of Cu‐TiO 2 and ZnIn 2 S 4 forms a strong interface electric field and regulates the direction of electron transfer due to the work function difference. Cu sites induce the transfer of photogenerated electrons from ZIS to Cu‐TiO 2 to generate electron‐rich Cu/Ti active sites, increasing the adsorption energy of CO 2 on Cu/Ti sites. Moreover, Cu‐TiO 2 @ZIS significantly reduces Gibbs free energy barriers for *COOH intermediate formation, thereby enhancing the photocatalytic performance of CO 2 reduction. This work exemplifies a new strategy for designing high‐active photocatalysts by manipulating heteroatomic metal‐dependent electron transfer.
科研通智能强力驱动
Strongly Powered by AbleSci AI