An adaptive DNN inference acceleration framework with end–edge–cloud collaborative computing

计算机科学 推论 延迟(音频) 云计算 服务器 边缘计算 计算 边缘设备 计算卸载 分布式计算 GSM演进的增强数据速率 移动边缘计算 计算机网络 人工智能 算法 操作系统 电信
作者
Guozhi Liu,Fei Dai,Xiaolong Xu,Xiaodong Fu,Wanchun Dou,Neeraj Kumar,Muhammad Bilal
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:140: 422-435 被引量:35
标识
DOI:10.1016/j.future.2022.10.033
摘要

Deep Neural Networks (DNNs) based on intelligent applications have been intensively deployed on mobile devices. Unfortunately, resource-constrained mobile devices cannot meet stringent latency requirements due to a large amount of computation required by these intelligent applications. Both exiting cloud-assisted DNN inference approaches and edge-assisted DNN inference approaches can reduce end-to-end inference latency through offloading DNN computations to the cloud server or edge servers, but they suffer from unpredictable communication latency caused by long wide-area massive data transmission or performance degeneration caused by the limited computation resources. In this paper, we propose an adaptive DNN inference acceleration framework, which accelerates DNN inference by fully utilizing the end–edge–cloud collaborative computing. First, a latency prediction model is built to estimate the layer-wise execution latency of a DNN on different heterogeneous computing platforms, which use neural networks to learn non-linear features related to inference latency. Second, a computation partitioning algorithm is designed to identify two optimal partitioning points, which adaptively divide DNN computations into end devices, edge servers, and the cloud server for minimizing DNN inference latency. Finally, we conduct extensive experiments on three widely-adopted DNNs, and the experimental results show that our latency prediction models can improve the prediction accuracy by about 72.31% on average compared with four baseline approaches, and our computation partitioning approach can reduce the end-to-end latency by about 20.81% on average against six baseline approaches under three wireless networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alfred发布了新的文献求助10
1秒前
冯先森ya发布了新的文献求助10
1秒前
pe发布了新的文献求助10
4秒前
科研通AI5应助走啊走啊走采纳,获得10
4秒前
4秒前
漂亮寻云发布了新的文献求助10
5秒前
隐形曼青应助wilson采纳,获得10
9秒前
10秒前
11秒前
雄i完成签到,获得积分10
11秒前
12秒前
14秒前
慕青应助lizhen采纳,获得10
15秒前
16秒前
decimalpoint发布了新的文献求助30
16秒前
香蕉觅云应助漂亮寻云采纳,获得10
16秒前
xhsz1111完成签到 ,获得积分10
17秒前
滴滴哒发布了新的文献求助10
17秒前
电催化CYY完成签到,获得积分10
19秒前
Amir发布了新的文献求助10
19秒前
我会发光啊完成签到,获得积分20
21秒前
Alfred发布了新的文献求助10
22秒前
开心市民小刘完成签到,获得积分20
23秒前
科研通AI5应助我爱Chem采纳,获得10
23秒前
魏绝义完成签到,获得积分10
24秒前
shimhjy应助Pendragon采纳,获得20
24秒前
yiyi完成签到,获得积分20
25秒前
顾矜应助张jy采纳,获得10
25秒前
负责的方盒完成签到,获得积分20
27秒前
天人合一完成签到,获得积分10
27秒前
乐乐应助科研民工采纳,获得10
27秒前
dominate完成签到,获得积分10
28秒前
科研通AI5应助滴迪氐媂采纳,获得10
28秒前
29秒前
sdfdzhang完成签到 ,获得积分10
29秒前
爱听歌的涵柏完成签到,获得积分10
29秒前
29秒前
30秒前
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627