T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein–Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment

人工神经网络 人工智能 变压器 阿尔法(金融) 计算机科学 机器学习 深度学习 化学 计算生物学 生物 工程类 数学 统计 结构效度 电压 电气工程 心理测量学
作者
Gregory W. Kyro,Anthony M. Smaldone,Yu Shee,C. F. Xu,Víctor S. Batista
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c02332
摘要

There is significant interest in targeting disease-causing proteins with small molecule inhibitors to restore healthy cellular states. The ability to accurately predict the binding affinity of small molecules to a protein target in silico enables the rapid identification of candidate inhibitors and facilitates the optimization of on-target potency. In this work, we present T-ALPHA, a novel deep learning model that enhances protein–ligand binding affinity prediction by integrating multimodal feature representations within a hierarchical transformer framework to capture information critical to accurately predicting binding affinity. T-ALPHA outperforms all existing models reported in the literature on multiple benchmarks designed to evaluate protein–ligand binding affinity scoring functions. Remarkably, T-ALPHA maintains state-of-the-art performance when utilizing predicted structures rather than crystal structures, a powerful capability in real-world drug discovery applications where experimentally determined structures are often unavailable or incomplete. Additionally, we present an uncertainty-aware self-learning method for protein-specific alignment that does not require additional experimental data and demonstrate that it improves T-ALPHA's ability to rank compounds by binding affinity to biologically significant targets such as the SARS-CoV-2 main protease and the epidermal growth factor receptor. To facilitate implementation of T-ALPHA and reproducibility of all results presented in this paper, we made all of our software available at https://github.com/gregory-kyro/T-ALPHA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小7完成签到,获得积分10
1秒前
啦啦啦啦发布了新的文献求助10
1秒前
1秒前
孟yifan完成签到,获得积分10
7秒前
kitty完成签到,获得积分10
8秒前
surefire完成签到,获得积分10
9秒前
10秒前
忘加H发布了新的文献求助10
10秒前
12秒前
bkagyin应助Hanbo_YANG采纳,获得10
12秒前
生活的狗完成签到,获得积分10
13秒前
标致的乐驹完成签到,获得积分10
14秒前
小二郎应助追寻白亦采纳,获得10
14秒前
14秒前
a涵发布了新的文献求助10
14秒前
我是老大应助liquor采纳,获得10
14秒前
15秒前
zhenxing发布了新的文献求助10
16秒前
16秒前
ding应助孙皓阳采纳,获得10
16秒前
18秒前
17发布了新的文献求助30
19秒前
19秒前
木炭完成签到,获得积分10
19秒前
19秒前
可靠的白竹完成签到 ,获得积分10
20秒前
清酒应助che采纳,获得80
20秒前
21秒前
无花果应助铁树采纳,获得10
21秒前
缓慢寄翠完成签到,获得积分10
22秒前
22秒前
刘浩然发布了新的文献求助10
23秒前
大个应助海燕采纳,获得10
24秒前
复杂傲旋完成签到,获得积分10
24秒前
月绛完成签到,获得积分10
25秒前
26秒前
爆米花应助www采纳,获得10
26秒前
28秒前
28秒前
YY发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930710
求助须知:如何正确求助?哪些是违规求助? 3475497
关于积分的说明 10987462
捐赠科研通 3205654
什么是DOI,文献DOI怎么找? 1771592
邀请新用户注册赠送积分活动 859127
科研通“疑难数据库(出版商)”最低求助积分说明 796951