Integrative Machine Learning, Virtual Screening, and Molecular Modeling for BacA-Targeted Anti-Biofilm Drug Discovery Against Staphylococcal Infections

药物发现 虚拟筛选 生物膜 药品 计算生物学 医学 计算机科学 生物信息学 药理学 生物 细菌 遗传学
作者
Ahmad Almatroudi
出处
期刊:Crystals [MDPI AG]
卷期号:14 (12): 1057-1057 被引量:4
标识
DOI:10.3390/cryst14121057
摘要

The rise in antibiotic-resistant Staphylococcal infections necessitates innovative approaches to identify new therapeutic agents. This study investigates the application of machine learning models to identify potential phytochemical inhibitors against BacA, a target related to Staphylococcal infections. Active compounds were retrieved from BindingDB while the decoy was generated from DUDE. The RDKit was utilized for feature engineering. Machine learning models such as k-nearest neighbors (KNN), the support vector machine (SVM), random forest (RF), and naive Bayes (NB) were trained on an initial dataset consisting of 226 active chemicals and 2550 inert compounds. Accompanied by an MCC of 0.93 and an accuracy of 96%, the RF performed better. Utilizing the RF model, a library of 9000 phytochemicals was screened, identifying 300 potentially active compounds, of which 192 exhibited drug-like properties and were further analyzed through molecular docking studies. Molecular docking results identified Ergotamine, Withanolide E, and DOPPA as top inhibitors of the BacA protein, accompanied by interaction affinities of −8.8, −8.1, and −7.9 kcal/mol, respectively. Molecular dynamics (MD) was applied for 100 ns to these top hits to evaluate their stability and dynamic behavior. RMSD, RMSF, SASA, and Rg analyses showed that all complexes remained stable throughout the simulation period. Binding energy calculations using MMGBSA analysis revealed that the BacA_Withanolide E complex exhibited the most favorable binding energy profile with significant van der Waals interactions and a substantial reduction in gas-phase energy. It also revealed that van der Waals interactions contributed significantly to the binding stability of Withanolide E, while electrostatic interactions played a secondary role. The integration of machine learning models with molecular docking and MD simulations proved effective in identifying promising phytochemical inhibitors, with Withanolide E emerging as a potent candidate. These findings provide a pathway for developing new antibacterial agents against Staphylococcal infections, pending further experimental validation and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小顾完成签到,获得积分10
刚刚
wt完成签到,获得积分10
刚刚
CC完成签到 ,获得积分10
1秒前
Jasper应助hui采纳,获得10
1秒前
shsdkl完成签到,获得积分10
1秒前
2秒前
黑胡椒发布了新的文献求助10
2秒前
3秒前
顺心若魔发布了新的文献求助30
3秒前
3秒前
jackie发布了新的文献求助30
3秒前
Plausible完成签到 ,获得积分10
4秒前
万能图书馆应助咻咻采纳,获得10
4秒前
4秒前
小雨唱片完成签到,获得积分10
4秒前
权涛完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
Suchus完成签到,获得积分10
6秒前
田様应助Gracebing采纳,获得10
6秒前
IAN驳回了顾矜应助
7秒前
Jasper应助赵亚南采纳,获得10
7秒前
元骑走之辣完成签到 ,获得积分10
8秒前
123mmmm发布了新的文献求助30
8秒前
研友_VZG7GZ应助丧彪采纳,获得10
8秒前
crazzzzzy完成签到,获得积分20
8秒前
小蘑菇应助长安风采纳,获得30
8秒前
权涛发布了新的文献求助10
8秒前
金123456789完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
蜘蛛侠呢完成签到 ,获得积分10
9秒前
花痴的手套完成签到 ,获得积分10
9秒前
9秒前
南风喜欢完成签到,获得积分10
10秒前
cenghao发布了新的文献求助10
11秒前
11秒前
棠梨煎雪完成签到,获得积分10
11秒前
link发布了新的文献求助10
12秒前
佳佳发布了新的文献求助10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614534
求助须知:如何正确求助?哪些是违规求助? 4699484
关于积分的说明 14903520
捐赠科研通 4739530
什么是DOI,文献DOI怎么找? 2547633
邀请新用户注册赠送积分活动 1511464
关于科研通互助平台的介绍 1473677