Rice Growth-Stage Recognition Based on Improved YOLOv8 with UAV Imagery

计算机科学 人工智能 像素 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 遥感 数学 几何学 语言学 地质学 哲学
作者
Wenxi Cai,Kunbiao Lu,Meijun Fan,Changjiang Liu,Wenjie Huang,Jiaju Chen,Zhaocong Wu,Chudong Xu,Xu Ma,Suiyan Tan
出处
期刊:Agronomy [MDPI AG]
卷期号:14 (12): 2751-2751 被引量:5
标识
DOI:10.3390/agronomy14122751
摘要

To optimize rice yield and enhance quality through targeted field management at each growth stage, rapid and accurate identification of rice growth stages is crucial. This study presents the Mobilenetv3-YOLOv8 rice growth-stage recognition model, designed for high efficiency and accuracy using Unmanned Aerial Vehicle (UAV) imagery. A UAV captured images of rice fields across five distinct growth stages from two altitudes (3 m and 20 m) across two independent field experiments. These images were processed to create training, validation, and test datasets for model development. Mobilenetv3 was introduced to replace the standard YOLOv8 backbone, providing robust small-scale feature extraction through multi-scale feature fusion. Additionally, the Coordinate Attention (CA) mechanism was integrated into YOLOv8’s backbone, outperforming the Convolutional Block Attention Module (CBAM) by enhancing position-sensitive information capture and focusing on crucial pixel areas. Compared to the original YOLOv8, the enhanced Mobilenetv3-YOLOv8 model improved rice growth-stage identification accuracy and reduced the computational load. With an input image size of 400 × 400 pixels and the CA implemented in the second and third backbone layers, the model achieved its best performance, reaching 84.00% mAP and 84.08% recall. The optimized model achieved parameters and Giga Floating Point Operations (GFLOPs) of 6.60M and 0.9, respectively, with precision values for tillering, jointing, booting, heading, and filling stages of 94.88%, 93.36%, 67.85%, 78.31%, and 85.46%, respectively. The experimental results revealed that the optimal Mobilenetv3-YOLOv8 shows excellent performance and has potential for deployment in edge computing devices and practical applications for in-field rice growth-stage recognition in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
law完成签到 ,获得积分10
2秒前
2秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
再慕完成签到,获得积分10
6秒前
wy.he应助王一采纳,获得20
7秒前
7秒前
7秒前
科研通AI6应助QG采纳,获得10
8秒前
远了个方发布了新的文献求助10
8秒前
8秒前
jjzzSherri完成签到 ,获得积分10
8秒前
远了个方发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
远了个方发布了新的文献求助10
11秒前
在水一方应助cyndi采纳,获得10
11秒前
12秒前
平淡凝雁完成签到,获得积分10
12秒前
B站萧亚轩发布了新的文献求助10
12秒前
xyg发布了新的文献求助10
14秒前
晓晓鹤完成签到,获得积分10
14秒前
15秒前
远了个方发布了新的文献求助10
16秒前
远了个方发布了新的文献求助10
16秒前
xvan发布了新的文献求助10
16秒前
18秒前
Duomo完成签到 ,获得积分10
19秒前
英姑应助xyg采纳,获得10
19秒前
Stone发布了新的文献求助10
21秒前
吴龙完成签到,获得积分10
22秒前
暴躁的猎豹完成签到 ,获得积分10
22秒前
22秒前
小乌龟发布了新的文献求助10
22秒前
科研通AI6应助wully采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630296
求助须知:如何正确求助?哪些是违规求助? 4722070
关于积分的说明 14972970
捐赠科研通 4788434
什么是DOI,文献DOI怎么找? 2556940
邀请新用户注册赠送积分活动 1517934
关于科研通互助平台的介绍 1478496